Skip to main content
Log in

Salinity Variations of the Intermediate Oyashio Waters and Their Relation with the Lunar Nodal Cycle

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

New oceanographic observations in the period 1990–2015 revealed significant salinity variations in the Oyashio Current. In the last 26 years, the salinity of the upper layer decreased by 0.2 PSU. The most rapid changes in salinity and temperature have been observed in the last five years. The time series of salinity measurements is characterized by the high-amplitude fluctuations synchronized with the lunar nodal cycle (18.6 years); i.e., high salinity is observed in the period of strong tidal currents. Modulation of diurnal tidal currents with the K1 and O1 periods in the lunar nodal cycle is significant [8, 9]. The amplitude was maximal in 1988 and 2006 and minimal in 1997 and 2015. The characteristics of tidal currents in the Oyashio Current and Sea of Okhotsk are considered based on available data of drifting buoys over the Kruzenshtern and Kashevarov banks. The amplitude of salinity variations synchronized with the lunar cycle is approximately 0.1 PSU; therefore, it has made a significant contribution to the salinity decrease in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Verbitskaya, S. V. Ageeva, I. O. Dugina, I. M. Dunaeva, N. F. Efremova, S. O. Romanskii, and V. V. Tarasyuk, “Catastrophic flood on the Amur River in summer 2013: features and causes,” Russ. Meteorol. Hydrol. 40, 683–690 (2015).

    Article  Google Scholar 

  2. A. N. Makhinov, V. I. Kim, and B. A. Voronov, “Flooding in the Amur River basin in 2013: causes and consequences,” Vestn. Dal’nevost. Otd., Ross. Akad. Nauk, No. 2, 5–14 (2014).

    Google Scholar 

  3. K. A. Rogachev, “Anticyclonic circulation and strong tidal currents on the Kruzenstern Bank,” Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr. 147, 217–223 (2006).

    Google Scholar 

  4. K. A. Rogachev and N. V. Shlyk, “Recent changes of the halocline characteristics and warming of the intermediate water in the Kamchatka current and the Oyashio,” Oceanology (Engl. Transl.) 49, 753 (2009).

    Google Scholar 

  5. K. A. Rogachev and N. V. Shlyk, “Warming of intermediate layers in the upper Oyashio in 1953–2007,” Russ. Meteorol. Hydrol. 34, 31–34 (2009).

    Article  Google Scholar 

  6. K. A. Rogachev and N. V. Shlyk, “Exceptional desalination of coastal waters in the northwestern part of the Sea of Okhotsk in 2013,” Vestn. Dal’nevost. Otd., Ross. Akad. Nauk, No. 2, 118–125 (2015).

    Google Scholar 

  7. N. V. Shlyk and K. A. Rogachev, “The rapid desalination of the Kamchatka Current,” Vestn. Dal’nevost. Otd., Ross. Akad. Nauk, No. 5, 113–119 (2016).

    Google Scholar 

  8. M. G. G. Foreman, P. F. Cummins, J. Y. Cherniawsky, and P. Stabeno, “Tidal energy in the Bering Sea,” J. Mar. Res. 64 (6), 797–818 (2006).

    Article  Google Scholar 

  9. S. M. McKinnell and W. R. Crawford, “The 18.6-year lunar nodal cycle and surface temperature variability in the northeast Pacific,” J. Geophys. Res.: Oceans 112 (02002), (2007). doi 10.1029/2006JC003671

    Google Scholar 

  10. K. Ohshima, T. Nakanowatari, S. Riser, et al., “Freshening and dense shelf water reduction in the Okhotsk Sea linked with sea ice decline,” Progr. Oceanogr. 126, 71–79 (2014).

    Article  Google Scholar 

  11. J. Ono, K. I. Ohshima, G. Mizuta, et al., “Amplification of diurnal tides over Kashevarov Bank in the Sea of Okhotsk and its impact on water mixing and sea ice,” Deep Sea Res., Part I 53 (3), 409–424 (2006).

    Article  Google Scholar 

  12. S. Osafune and I. Yasuda, “Bidecadal variability in the intermediate waters of the northwestern subarctic Pacific and the Okhotsk Sea in relation to 18.6-year period nodal tidal cycle,” J. Geophys. Res.: Oceans 111 (05007), (2006). doi 10.1029/2005JC003277

    Google Scholar 

  13. K. A. Rogachev, “Rapid thermohaline transition in the Pacific western subarctic and Oyashio fresh core eddies,” J. Geophys. Res.: Oceans 105 (4), 8513–8526 (2000).

    Article  Google Scholar 

  14. K. A. Rogachev, “Recent variability in the Pacific western subarctic boundary currents and Sea of Okhotsk,” Progr. Oceanogr. 47 (2–4), 299–336 (2000).

    Article  Google Scholar 

  15. K. A. Rogachev, E. C. Carmack, and A. S. Salomatin, “Strong tidal mixing and ventilation of cold intermediate water at Kashevarov Bank, Sea of Okhotsk,” J. Oceanogr. 56 (4), 439–447 (2000).

    Article  Google Scholar 

  16. K. A. Rogachev, E. C. Carmack, A. S. Salomatin, and M. G. Alexanina, “Lunar fortnightly modulation of tidal mixing near Kashevarov Bank, Sea of Okhotsk, and its impacts on biota and sea ice,” Progr. Oceanogr. 49 (1–4), 373–390 (2001).

    Article  Google Scholar 

  17. K. A. Rogachev, N. V. Shlyk, and E. C. Carmack, “The shedding of mesoscale anticyclonic eddies from the Alaskan Stream and westward transport of warm water,” Deep Sea Res., Part II 54 (23–26), 2643–2656 (2007).

    Article  Google Scholar 

  18. T. C. Royer, “High latitude oceanic variability associated with the 18.6-year nodal tide,” J. Geophys. Res.: Oceans 98 (3), 4639–4644 (1993).

    Article  Google Scholar 

  19. P. J. Stabeno and R. K. Reed, “A major circulation anomaly in the western Bering Sea,” Geophys. Res. Lett. 19 (16), 1671–1674 (1992). doi 10.1029/92GL01688

    Article  Google Scholar 

  20. P. J. Stabeno, R. K. Reed, and J. E. Overland, “Lagrangian measurements in the Kamchatka Current and Oyashio,” J. Oceanogr. 50 (6), 653–662 (1994).

    Article  Google Scholar 

  21. Y. Tanaka, I. Yasuda, and H. Hasumi, “Effects of the 18.6-yr modulation of tidal mixing on the North Pacific bi-decadal climate variability in a coupled climate model,” J. Clim. 25 (21), 7625–7642 (2012).

    Article  Google Scholar 

  22. H. Uehara, A. A. Kruts, H. Mitsudera, et al., “Remotely propagating salinity anomaly varies the source of North Pacific ventilation,” Progr. Oceanogr. 126, 80–97 (2014).

    Article  Google Scholar 

  23. I. Yasuda, S. Ito, Y. Shimizu, et al., “Cold-core anticyclonic eddies south of the Boussole Strait in the northwestern Subarctic Pacific,” J. Phys. Oceanogr. 30 (6), 1137–1157 (2000).

    Article  Google Scholar 

  24. I. Yasuda, S. Osafune, and H. Tatebe, “Possible explanation linking 18.6-year period nodal tidal cycle with bi-decadal variations of ocean and climate in the North Pacific,” Geophys. Res. Lett. 33 (L08606), (2006). doi 10.1029/2005GL025237

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Rogachev.

Additional information

Original Russian Text © K.A. Rogachev, N.V. Shlyk, 2018, published in Okeanologiya, 2018, Vol. 58, No. 1, pp. 5–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogachev, K.A., Shlyk, N.V. Salinity Variations of the Intermediate Oyashio Waters and Their Relation with the Lunar Nodal Cycle. Oceanology 58, 1–7 (2018). https://doi.org/10.1134/S0001437018010113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437018010113

Navigation