Skip to main content
Log in

Volcanoclastics of the Walvis Ridge

  • Marine Geology
  • Published:
Oceanology Aims and scope

Abstract

The paper generalizes the distribution of volcanoclastic material in the Cenozoic sedimentary cover of the Walvis Ridge, made on the basis of the DSDP (Deep Sea Drilling Projects) and ODP (Ocean Drilling Program). The cycles of volcanoclastic accumulation have been distinguished. It has been proved that the distribution of the material in the Paleogene primary reflects the dynamics of volcanism of the ridge itself. The sources of volcanoclastics have been determined. The possibility of the existence of Early Eocene submarine volcanoes in the central part of the ridge has been shown. The dynamics of volcanism of the ridge has been compared with the variability of major climatic markers in sediments, indicating the unity of volcanic processes in the region and processes that led to an increase in the index of 13C content in sediments and CO2 content in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Artamonov and B. P. Zolotarev, “Tectonics and magmatism of intraplate oceanic rises and the hot-spot hypothesis,” Geotectonics 42, 64–79 (2008).

    Article  Google Scholar 

  2. M. S. Barash, “Response of oceanic organisms to abiotic events in the Paleogene,” Oceanology (Engl. Transl.) 49, 385–395 (2009).

    Google Scholar 

  3. D. V. Eroshenko, Candidate’s Dissertation in Biology (Kant Russian State Univ., Kaliningrad, 2009) [in Russian].

    Google Scholar 

  4. A. S. Monin and Yu. A. Shishkov, History of Climate (Gidrometeoizdat, Leningrad, 1979) [in Russian].

    Google Scholar 

  5. A. A. Peyve, “Seamounts in the east of South Atlantic: origin and correlation with Mesozoic-Cenozoic magmatic structures of West Africa,” Geotectonics 45, 195 (2011).

    Article  Google Scholar 

  6. G. S. Kharin and D. V. Eroshenko, “History of eruptive magmatism in the Caribbean Basin,” Petrology 9, 545–559 (2001).

    Google Scholar 

  7. G. S. Kharin and D. V. Eroshenko, “The evolution of Cenozoic explosive volcanism: the Iceland Plume,” J. Volcanol. Seismol. 4, 310–333 (2010).

    Article  Google Scholar 

  8. I. I. Shmakov and E. N. Bozhko, “Origin of marine placers of diamonds in Namibia,” Vestn. Voronezh. Gos. Univ., Ser. Geol., No. 1, 116–126 (2008).

    Google Scholar 

  9. C. Adam, V. Vidal, and J. Escartín, “80–Myr history of buoyancy and volcanic fluxes along the trails of the Walvis and St. Helena hotspots (South Atlantic),” Earth Planet. Sci. Lett. 261, 432–442 (2007).

    Article  Google Scholar 

  10. K. D. Bailey and A. R. Woolley, “Episodic rift magmatism: the need for a new paradigm in global dynamics,” GeoLines (Praha) 9, 15–20 (1999).

    Google Scholar 

  11. T. Bartels, S. Krastel, and V. Spiess, “Correlation of high-resolution seismic data with ODP Leg 208 borehole measurements,” Proc. Ocean Drill. Program: Sci. Results 208, (2004). http://www-odp.tamu.edu/publications/208_SR/VOLUME/CHAPTERS/204.PDF.

  12. D. J. Beerling and D. L. Royer, “Convergent Cenozoic CO2 history,” Nat. Geosci. 4, 418–420 (2011). http://www.nature.com/naturegeoscience.

    Article  Google Scholar 

  13. W. E. Dean and N. L. Parduhn, “Inorganic geochemistry of sediments and rocks recovered from the Southern Angola basin and adjacent Walvis Ridge, Sites 530 and 532, Deep Sea Drilling Project Leg 75,” Initial Rep. Deep Sea Drill. Proj. 75, 923–958 (1984).

    Google Scholar 

  14. R. V. Fodor, K. Keil, J. W. Husler, and E. H. McKee, “Petrology and K–Ar age of volcanic tuff and ash from the Walvis Seamount Province, DSDP Site 359, Leg 39,” Initial Rep. Deep Sea Drill. Proj. 39, 525–536 (1977).

    Google Scholar 

  15. D. K. Fütterer, “Bioturbation and trace fossils in deep sea sediments of the Walvis Ridge, Southeastern Atlantic, Leg 74,” Initial Rep. Deep Sea Drill. Proj. 74, 543–555 (1984).

    Google Scholar 

  16. W. W. Hay, J.-C. Sibuet, et al., “Site 530,” Initial Rep. Deep Sea Drill. Proj. 75, 29–286 (1984).

    Google Scholar 

  17. K. J. Hsü, J. L. LaBrecque, et al., “Site 524,” Initial Rep. Deep Sea Drill. Proj. 73, 323–386 (1984).

    Google Scholar 

  18. P. E. Janney, A. P. Le Roex, R. W. Carlson, and K. S. Viljoen, “A chemical and multi-isotope study of the Western Cape olivine melilitite province. South Africa: implications for the sources of kimberlites and the origin of the HIMU signature in Africa,” J. Petrol. 43 (12), 2339–2370 (2002).

    Article  Google Scholar 

  19. M. Kukkulus, Doctoral Dissertation in Nature Sciences (Bayerischen Julius-Maximilians-Universität Würzburg, Würzburg, 2004).

    Google Scholar 

  20. M. J. Le Bass, R. W. Le Maintre, A. Streckeisen, et al., “Chemical classification of volcanic rocks based on the total alkali–silica diagram,” J. Petrol. 27, 745–750 (1997).

    Article  Google Scholar 

  21. A. P. Le Roex, R. A. Cliff, and B. J. I. Adair, “Tristan da Cunha, South Atlantic: geochemistry and petrogenesis of a basanite-phonolite lava series,” J. Petrol. 31 (4), 779–812 (1990). doi 10.1093/petrology/31.4.779

    Article  Google Scholar 

  22. L. Leclaire, “Late cretaceous and cenozoic pelagic deposits—paleoenvironment and paleooceanography of the Central Western Indian ocean,” Initial Rep. Deep Sea Drill. Proj. 25, 481–513 (1974).

    Google Scholar 

  23. Y.-G. Liu and R. A. Schmitt, “Chemical profiles in sediment and basalt samples from Deep Sea Drilling Project Leg 74, Hole 525a, Walvis Ridge,” Initial Rep. Deep Sea Drill. Proj. 74, 713–730 (1984).

    Google Scholar 

  24. H. Maillot and C. Robert, “Significance of clay mineralogical and geochemical data, Walvis Ridge, Southeast Atlantic, Leg 75, Deep Sea Drilling Project,” Initial Rep. Deep Sea Drill. Proj. 75, 845–856 (1984).

    Google Scholar 

  25. J. S. Marsh, A. Eward, S. C. Milner, et al., “The Etendeca igneous Province magma types and their stratigraphic distribution eighth implications for the evolution of the Parana–Etendeca flood basalt province,” Bull. Volcanol. 62, 464–486 (2001). doi 10.1007/s004450000115

    Article  Google Scholar 

  26. T. C. Moore, Jr., P. D. Rabinowitz, P. E. Borella, et al., “History of the Walvis Ridge,” Initial Rep. Deep Sea Drill. Proj. 74, 873–894 (1980).

    Google Scholar 

  27. T. C. Moore, Jr., P. D. Rabinowitz, et al., “Site 525,” Initial Rep. Deep Sea Drill. Proj. 74, 41–160 (1984).

    Google Scholar 

  28. T. C. Moore, Jr., P. D. Rabinowitz, et al., “Site 527,” Initial Rep. Deep Sea Drill. Proj. 74, 237–306 (1984).

    Google Scholar 

  29. T. C. Moore, Jr., P. D. Rabinowitz, et al., “Site 528,” Initial Rep. Deep Sea Drill. Proj. 74, 307–406 (1984).

    Google Scholar 

  30. T. C. Moore, Jr., P. D. Rabinowitz, et al., “Site 529,” Initial Rep. Deep Sea Drill. Proj. 74, 407–468 (1984).

    Google Scholar 

  31. M. J. Nicolo and G. R. Dickens, “Data report: terrigenous grain–size distributions at sites 1263 and 1267: testing the applicability of leg 208 sediments for eolian analysis,” Proc. Ocean Drill. Program: Sci. Results 208, (2004). http://www.odp.tamu.edu/publications/208_SR/205/205.htm.

  32. J. M. O’Connor and R. Duncan, “Evolution of the Walvis Ridge–Rio Grande Rise hotspot system: implications for African and South American plate motions over plumes,” J. Geophys. Res., B 95 (11), 17475–17502 (1990).

    Article  Google Scholar 

  33. S. H. Richardson, A. J. Erlank, D. L. Reid, and A. R. Duncan, “Major and trace elements and Nd and Sr isotope geochemistry of basalts from the Deep Sea Drilling Project Leg 74 Walvis Ridge transect,” Initial Rep. Deep Sea Drill. Proj. 74, 739–754 (1984).

    Google Scholar 

  34. J. K. Rohde, P. van den Bogaard, and K. Hoernle, “Evidence for an age progression along the Tristan–Gough volcanic track from new 40Ar/39Ar ages on phenocryst phases,” Tectonophysics 604, 60–71 (2013).

    Article  Google Scholar 

  35. V. J. M. Salters and A. Sachi-Kocher, “An ancient metasomatic source for the Walvis Ridge basalts,” Chem. Geol. 273, 151–167 (2010).

    Article  Google Scholar 

  36. N. J. Shackleton and M. A. Hall, “Carbon isotope data from leg 74 sediments,” Initial Rep. Deep Sea Drill. Proj. 74, 613–619 (1980).

    Google Scholar 

  37. V. Spieβ, B. Beitler, W. Böke, et al., METEOR–Berichte 02–1, ODP Südatlantik 2001, Part 1, cruise no. 49, Leg 1. http://elib.suub.uni-bremen.de/edocs/00103154-1.pdf.

  38. D. A. V. Stow, “Turbidite facies, associations, and sequences in the Southeastern Angola basin,” Initial Rep. Deep Sea Drill. Proj. 75, 785–799 (1984).

    Google Scholar 

  39. P. R. Supko, K. Perch-Nielsen, et al., “Site 359,” Initial Rep. Deep Sea Drill. Proj. 39, 373–391 (1977).

    Google Scholar 

  40. G. Thompson and S. E. Humphris, “Petrology and geochemistry of rocks from the Walvis Ridge: Deep Sea Drilling Project Leg 74, Sites 525, 527, and 528,” Initial Rep. Deep Sea Drill. Proj. 74, 755–764 (1984).

    Google Scholar 

  41. B. L. Weaver, “The origin of ocean island basalt end–member compositions trace element and isotopic constraints,” Earth Planet. Sci. Lett. 104, 381–397 (1991.

    Article  Google Scholar 

  42. J. Zachos, M. Pagani, L. Sloan, et al., “Trends, rhythms, and aberrations in global climate 65 Ma to present,” Science 292 (5517), 686–693 (2001).

    Article  Google Scholar 

  43. J. C. Zachos, D. Kroon, P. Blum, et al., “Site 1262,” Proc. ODP, Init. Repts. 208, 1–92 (2004). doi 10.2973/odp.proc.ir.208.103.2004

    Google Scholar 

  44. J. C. Zachos, D. Kroon, P. Blum, et al., “Site 1263,” Proc. ODP, Init. Repts. 208, 1–87 (2004). doi 10.2973/odp.proc.ir.208.104.2004

    Google Scholar 

  45. J. C. Zachos, D. Kroon, P. Blum, et al., “Site 1264,” Proc. ODP, Init. Repts. 208, 1–73 (2004). doi 10.2973/odp.proc.ir.208.105.2004

    Google Scholar 

  46. J. C. Zachos, D. Kroon, P. Blum, et al., “Site 1265,” Proc. ODP, Init. Repts. 208, 1–107 (2004). doi 10.2973/odp.proc.ir.208.106.2004

    Google Scholar 

  47. J. C. Zachos, D. Kroon, P. Blum, et al., “Site 1266,” Proc. ODP, Init. Repts. 208, 1–79 (2004). doi 10.2973/odp.proc.ir.208.107.2004

    Google Scholar 

  48. J. C. Zachos, D. Kroon, P. Blum, et al., “Site 1267,” Proc. ODP, Init. Repts. 208, 1–77 (2004). doi 10.2973/odp.proc.ir.208.108.2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Eroshenko.

Additional information

Original Russian Text © D.V. Eroshenko, G.S. Kharin, 2018, published in Okeanologiya, 2018, Vol. 58, No. 2, pp. 316–330.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroshenko, D.V., Kharin, G.S. Volcanoclastics of the Walvis Ridge. Oceanology 58, 301–314 (2018). https://doi.org/10.1134/S0001437018010058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437018010058

Navigation