Advertisement

Oceanology

, Volume 57, Issue 2, pp 289–297 | Cite as

The trophic position of the alien crab Rhithropanopeus harrisii (crustacea decapoda panopeidae) in the Taman Bay, Sea of Azov community

  • A. K. Zalota
  • G. A. Kolyuchkina
  • A. V. Tiunov
  • S. V. Biriukova
  • V. A. Spiridonov
Marine Biology

Abstract

This work concerns the trophic web positioning of the alien crab Rhithropanopeus harrisii and other common marine invertebrate species and fishes in the benthic ecosystem of the shallows of Taman Bay, Sea of Azov. The base of the trophic web in this system is composed of phytoplankton, macrophytes (algae and marine grasses), and reeds that use atmospheric carbon for photosynthesis. Analysis of the isotopic composition of nitrogen and carbon has shown that although marine grasses are dominating primary producers in the shallows of the bay, primary consumers (such as Cerastoderma glaucum, Porifera gen. sp., Gammarus aequicauda, Deshayesorchestia deshayesii and Idotea balthica) only partially use this organic source; instead, they use a combination of different sources of primary production. It has been shown that the food source of the alien crab is primarily of animal origin. In Taman Bay, R. harrisii is on the same trophic level as other carnivores/scavengers: benthic fishes Syngnathus nigrolineatus, Gobius spp. and native crab Pilumnus hirtellus and shrimp Palaemon adspersus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. N. Burukovskii, Feeding and Food Chains of Scrimps (Kaliningrad State Technical Univ., Kaliningrad, 2009) [in Russian].Google Scholar
  2. 2.
    V. P. Vorob’ev, “Benthos of the Sea of Azov,” Tr. Azov.- Chernomorsk. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., No. 13, (1949).Google Scholar
  3. 3.
    Hydrometeorology and Hydrochemistry of the Soviet Seas, Vol. 5: The Sea of Azov (Gidrometeoizdat, St. Petersburg, 1991) [in Russian].Google Scholar
  4. 4.
    V. V. Gromov, V. N. Shevchenko, and D. F. Afanas’ev, “Phytobenthos of Taman Bay and Kerch Strait,” in Fishery and Protection of Fishery Reservoirs of the Azov- Black Sea Basin (Natsional’nye Rybnye Resursy, Moscow, 2002), pp. 170–176.Google Scholar
  5. 5.
    D. A. Ivanov and I. A. Sinegub, “Transformation of biocenosises of the Kerch Strait after invasion of the raptorial mollusk Rapana thomasiana and bivalves Mya areanaria and Cunearca cornea,” Proceedings of the III International Conf. “Ecological Problems in the Azov-Black Sea Basin,” Kerch, November 10–11, 2007 (Southern Scientific Research Institute of Marine Fishery and Oceanography, Kerch, 2008), pp. 45–51.Google Scholar
  6. 6.
    A. I. Kolesnichenko, MSc Thesis (Kaliningrad State Technical Univ., Kaliningrad, 2014).Google Scholar
  7. 7.
    A. I. Kolesnichenko, R. N. Burukovskii, and I. N. Marin, “Food diversity of crab-invader Rhithropanopeus harrisii (Panopeidae, Brachyura, Decapoda) in Vislinsky Bay (Baltic Sea),” Povolzhsk. Ekol. Zh., No. 4, 508–515 (2014).Google Scholar
  8. 8.
    Yu. I. Kantor and A. V. Sysoev, Catalogue of Mollusks of Russia and Adjacent Countries (KMK, Moscow, 2005) [in Russian].Google Scholar
  9. 9.
    N. M. Litvinenko and I. V. Evchenko, “Dynamics of quantitative and qualitative composition of zoobenthos from the Sea of Azov after damming of the Don River,” Proceedings of the II International Conf. “Ecological Problems in the Azov-Black Sea Basin” (Southern Scientific Research Institute of Marine Fishery and Oceanography, Kerch, 2006), pp. 36–41.Google Scholar
  10. 10.
    V. Ya. Lus, “Feeding of gobies (fam. Gobiidae) in the Sea of Azov,” Tr. Inst. Okeanol., Akad. Nauk SSSR, No. 62, 96–127 (1963).Google Scholar
  11. 11.
    P. R. Makarevich P. A., Lyubin, and V. V. Larionov, “Basic tendencies in the structural dynamics of phytoplanktonic and benthic communities in the Sea of Azov,” Russ. J. Ecol. 31, 411–414 (2000).CrossRefGoogle Scholar
  12. 12.
    A. K. Makarov, “New elements in fauna of the Black Sea lemans related to navigation,” Dokl. Akad. Nauk SSSR 23 (8), 25–26 (1939).Google Scholar
  13. 13.
    F. D. Mordukhai-Boltovskoi, “Invasion of crab species into the Don River basin,” Priroda (Moscow), No. 1, 113 (1952).Google Scholar
  14. 14.
    F. D. Mordukhai-Boltovskoi, Guide for Classification of Fauna of the Black and Azov Seas (Naukova Dumka, Moscow, 1968), Vols. 1–3.Google Scholar
  15. 15.
    V. V. Murina and O. G. Reznichenko, “Autoacclimatization of crab Rhithropanopeus harrisii tridentatus (Maitland) in Vislinsky Bay,” Tr. Vses. Gidrobiol. O-va, No. 10, 255–264 (1960).Google Scholar
  16. 16.
    M. V. Nabozhenko, I. V. Shokhin, and N. I. Bulysheva, “Zoobenthos,” in Alien Species in Biological Diversity and Productivity of the Azov and Black Seas, Ed. by G. G. Matishov and A. R. Boltachev (Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 2010), pp. 17–27.Google Scholar
  17. 17.
    S. N. Ovsienko, D. G. Fashchuk, S. N. Zatsepa, et al., “Storm on November 11, 2007. Chronicles, mathematical modeling, and geographic-ecological analysis,” Tr. Gos. Okeanogr. Inst. 211, 308–340 (2008).Google Scholar
  18. 18.
    O. G. Reznichenko, Feeding of Some Bottom Crustaceans in the Sea of Azov: Annotations to the Researches Performed at All-Union Scientific Research Institute of Marine Fisheries and Oceanography (VNIRO) in 1956 (VNIRO, Moscow, 1958), No. 1, pp. 48–52.Google Scholar
  19. 19.
    O. G. Reznichenko, “Transoceanic autoacclimatization of Rhithropanopeus harrisii (Crustacea, Brachyura),” Tr. Inst. Okeanol., Akad. Nauk SSSR, No. 85, 136–177 (1967).Google Scholar
  20. 20.
    E. M. Reikh, “Feeding of round goby juveniles in Obitochnyi Bay of Sea of Azov,” Tr. VNIRO 65, 310–316 (1969).Google Scholar
  21. 21.
    E. M. Reikh, “Feeding of syrman goby from the Sea of Azov,” Tr. VNIRO 65, 317–325 (1969).Google Scholar
  22. 22.
    N. G. Sergeeva and O. N. Burkatskii, “Macrobenthos from the eastern part of Sea of Azov in autumn 2000,” Ekol. Morya 61, 29–35 (2002).Google Scholar
  23. 23.
    V. A. Spiridonov, G. A. Kolyuchkina, N. A. Belyaev, et al., “Modern status of macrozoobenthos from ultra shallow water zone of the Taman Bay (Sea of Azov),” Okeanologiya (Moscow), 2017, (in press).Google Scholar
  24. 24.
    K. Aarnio, A. Törnroos, C. Björklund, and E. Bonsdorff, “Food web positioning of a recent colonizer: the North American Harris mud crab Rhithropanopeus harrisii (Gould, 1841) in the northern Baltic Sea,” Aquat. Invasions 10 (4), 399–413 (2015).CrossRefGoogle Scholar
  25. 25.
    S. Y. Al-Mohanna and J. A. Nott, “R-cells and the digestive cycle in Penaeus semisulcatus (Crustacea: Decapoda),” Mar. Biol. 95, 129–137 (1987).CrossRefGoogle Scholar
  26. 26.
    P. L. Barker and R. Gibson, “Observations on the feeding mechanism, structure of the gut, and digestive physiology of the European lobster Homarus gammarus (L.) (Decapoda: Nephropidae),” J. Exp. Mar. Biol. Ecol. 26, 297–324 (1977).CrossRefGoogle Scholar
  27. 27.
    T. M. Bell and E. E. Sotka, “Local adaptation in adult feeding preference and juvenile performance in the generalist herbivore Idotea balthica,” Oecologia 170, 383–393 (2012).CrossRefGoogle Scholar
  28. 28.
    C. Boström and J. Mattila, “Effects of isopod grazing: an experimental comparison in temperate (Idotea balthica, Baltic Sea, Finland) and subtropical (Erichsonella attenuata, Gulf of Mexico, USA) ecosystems,” Crustaceana 78 (2), 185–200 (2005).CrossRefGoogle Scholar
  29. 29.
    A. M. Buitendijk and L. B. Holthuis, “Note on the Zuiderzee crab, Rithropanopeus harrisii (Gould) subspecies tridentatus (Maitland),” Zool. Meded. 30 (7), 95–106 (1949).Google Scholar
  30. 30.
    P. Czerniejewski and A. Rybczyk, “Body weight, morphometry, and diet of the mud crab, Rhithropanopeus harrisii tridentatus (Maitland, 1874) in the Odra estuary, Poland,” Crustaceana 81 (11), 1289–1299 (2008).CrossRefGoogle Scholar
  31. 31.
    M. J. DeNiro and S. Epstein, “Influence of diet on the distribution of carbon isotopes in animals,” Geochim. Cosmochim. Acta 42, 495–506 (1978).CrossRefGoogle Scholar
  32. 32.
    S. Deudero, M. Cabanellas, A. Blanco, and S. Tejada, “Stable isotope fractionation in the digestive gland, muscle and gills tissues of the marine mussel Mytilus galloprovincialis,” J. Exp. Mar. Biol. Ecol. 368, 181–188 (2009).CrossRefGoogle Scholar
  33. 33.
    J. G. Douglass and J. E. Duffy, “Food web structure in a Chesapeake bay eelgrass bed as determined through gut contents and 13C and 15N isotope analysis,” Estuaries Coasts 34, 701–711 (2011).CrossRefGoogle Scholar
  34. 34.
    T. Forsström, A. E. Fowler, I. Manninen, and O. Vesakoski, “An introduced species meets the local fauna: predatory behavior of the crab Rhithropanopeus harrisii in the Northern Baltic Sea,” Biol. Invasions 17, 2729–2741 (2015).CrossRefGoogle Scholar
  35. 35.
    A. E. Fowler, T. Forsström, M. von Numers, and O. Vesakoski, “The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized Northern Baltic Sea: distribution and ecology,” Aquat. Invasions 8 (1), 89–96 (2013).CrossRefGoogle Scholar
  36. 36.
    R. L. France and R. H. Peters, “Ecosystem differences in the trophic enrichment of 13C in aquatic food webs,” Can. J. Fish. Aquat. Sci. 54, 1255–1258 (1997).CrossRefGoogle Scholar
  37. 37.
    S. Fredriksen, “Food web studies in a Norwegian kelp forest based on stable isotope (d13C and d15N) analysis,” Mar. Ecol.: Progr. Ser. 260, 71–81 (2003).CrossRefGoogle Scholar
  38. 38.
    J. Hegele-Drywa and M. Normant, “Feeding ecology of the American crab Rhithropanopeus harrisii (Crustacea, Decapoda) in the coastal waters of the Baltic Sea,” Oceanologia 51 (3), 361–375 (2009).CrossRefGoogle Scholar
  39. 39.
    S. P. Hopkin and J. A. Nott, “Studies on the digestive cycle of the shore crab Carcinus maenas (L.) with special reference to the B-cells in the hepatopancreas,” J.Mar. Biol. Assoc. U.K. 60, 891–907 (1980).CrossRefGoogle Scholar
  40. 40.
    H. Kevrekidis and A. Koukouras, “Seasonal variation of abundance of Gammarus aequicauda (Crustacea: Amphipoda) in the Evros Delta (NE Greece),” Israel J. Zool. 36, 113–123 (1989).Google Scholar
  41. 41.
    O. Kinne and I. W. Rotthauwe, “Biologische Beobachtungen und Untersuehnngen fiber die Blutkonzentration an Iteteropanope tridentatus Maitland (Dekapoda),” Kieler Meeresforsch. 8, 212–217 (1952).Google Scholar
  42. 42.
    S. Kujawa, “Biologia i hodowla kraba z Zalewu Wislanego Rhithropanopeus harrisi (Gould) subsp., tridentata (Maitland),” Wszechgwiat 2, 57–59 (1957).Google Scholar
  43. 43.
    C. A. Layman, M. S. Araujo, R. Boucek, et al., “Applying stable isotopes to examine food-web structure: an overview of analytical tools,” Biol. Rev. 87, 545–562 (2012).CrossRefGoogle Scholar
  44. 44.
    M. Minagawa and E. Wada, “Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age,” Geochim. Cosmochim. Acta 48, 1135–1140 (1984).CrossRefGoogle Scholar
  45. 45.
    Y. S. Olsen, S. E. Fox, M. Teichberg, et al., “d15N and d13C reveal differences in carbon flow through estuarine benthic food webs in response to the relative availability of macroalgae and eelgrass,” Mar. Ecol.: Progr. Ser. 421, 83–96 (2011).CrossRefGoogle Scholar
  46. 46.
    B. J. Peterson and B. Fry, “Stable isotopes in ecosystem studies,” Ann. Rev. Ecol. Syst. 18, 293–320 (1987).CrossRefGoogle Scholar
  47. 47.
    B. J. Peterson, “Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review,” Acta Oecol. 20, 479–487 (1999).CrossRefGoogle Scholar
  48. 48.
    D. M. Post, “Using stable isotopes to estimate trophic position: models, methods, and assumptions,” Ecology 83, 703–718 (2002).CrossRefGoogle Scholar
  49. 49.
    J. S. Rounick and M. J. Winterbourn, “Stable carbon isotopes and carbon flow in ecosystems,” Bioscience 36, 171–177 (1986).CrossRefGoogle Scholar
  50. 50.
    W. Schäfer, “Form und Funktion der Brachyurenschere,” Abh. Senckenb. Naturforsch. Ges. 489, 1–66 (1954).Google Scholar
  51. 51.
    M. Szudarski, Distribution of the Crab Rhithropanopeus harrisii (Golud) subsp. tridentatus (Maitland) in Poland (International Council for the Exploration of the Sea, Gdynia, 1963).Google Scholar
  52. 52.
    K. Turoboyski, “Biology and ecology of the crab Rhithropanopeus harrisii ssp. tridentatus,” Mar. Biol. 23, 303–313 (1973).CrossRefGoogle Scholar
  53. 53.
    W. L. Wiedemeyer and R. Schwamborn, “Detritus derived from eelgrass and macroalgae as potential carbon source for Mytilus edulis in Kiel Fjord, Germany: a preliminary carbon isotopic study,” Helgol. Meeresunters 50, 409–413 (1996).CrossRefGoogle Scholar
  54. 54.
    W. H. Wong and J. S. Levinton, “The trophic linkage between zooplankton and benthic suspension feeders: direct evidence from analyses of bivalve faecal pellets,” Mar. Biol. 148, 799–805 (2006).CrossRefGoogle Scholar
  55. 55.
    A. K. Zalota, V. A. Spiridonov, and G. A. Kolyuchkina, “New method of in situ observations and census of invasive mud crab Rhithropanopeus harrisii (Crustacea, Decapoda, Panopeidae) applied in the Black and Azov seas,” Arthropoda Selecta 25, 2016 pp. 39–62.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. K. Zalota
    • 1
  • G. A. Kolyuchkina
    • 1
  • A. V. Tiunov
    • 2
  • S. V. Biriukova
    • 3
  • V. A. Spiridonov
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  3. 3.Azov Branch, Murmansk Marine Biological Institute, Kola Scienific CenterRussian Academy of SciencesRostov-on-DonRussia

Personalised recommendations