Skip to main content

Authigenic Mg-calcite at a cold methane seep site in the Laptev Sea

Abstract

Authigenic minerals were studied in Holocene shelf sediments of the Laptev Sea (cold methane seep site, water depth 71 m). The study presents the first finds of large hard carbonate concretions with Mg-calcite cement in recent sediments of the Arctic shelf seas. These concretions differ from previously reported glendonites and concretions from bottom sediments of the White Sea, Kara Sea, Sea of Okhotsk, etc. A study of the morphology, microstructure, and composition of these newly reported concretions revealed the multistage formation of carbonates (structural varieties of Mg-calcite and aragonite). It was shown that organic matter played an important role in the formation of authigenic carbonates, i.e., in the formation of sedimentary–diagenetic Mg-calcite. The role of methane as a possible source for authigenic carbonate formation was estimated. It was found that methane-derived Mg-calcite accounts for 17–35% of concretion materials. Mg-calcite had δ13С-Сcarb values between–24 and–23‰ and δ13С-Сorg values between–44.5 and–88.5‰.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. L. Bezrukov and A. P. Lisitzin, “Classification of sediments of modern marine reservoirs,” Tr. Inst. Okeanol., Akad. Nauk SSSR 32, 3–14 (1960).

    Google Scholar 

  2. 2.

    E. M. Galimov, L. A. Kodina, O. V. Stepanets, and G. S. Korobeinik, “Biogeochemistry of the Russian Arctic. Kara Sea: research results under the SIRRO project, 1995–2003,” Geochem. Int. 44, 1053–1104 (2006).

    Article  Google Scholar 

  3. 3.

    A. R. Geptner, V. V. Petrova, and O. S. Vetoshkina, “New data on the composition of stable isotopes in glendonites of the White Sea and their genesis,” Lithol. Miner. Res. 49, 473–490 (2014).

    Article  Google Scholar 

  4. 4.

    E. A. Gusev, A. P. Matyushev, A. S. Rudoi, and A. N. Usov, “Quaternary sediments of the central part of Kara Sea,” in The Results of System Oceanological Studies in Arctic, Ed. by A. P. Lisitzin (Nauchnyi Mir, Moscow, 2001), pp. 553–558.

    Google Scholar 

  5. 5.

    M. E. Kaplan, “Calcite pseudomorphs (pseudogeimocent, gerovit, thinolite, glendonite, White Sea flyers) in sedimentary minerals. Origin of pseudomorphs,” Litol. Polezn. Iskop., No. 5, 125–141 (1979).

    Google Scholar 

  6. 6.

    A. A. Krylov, E. A. Logvina, T. V. Matveeva, et al., “Ikait (CaCO3 · 6H2O) in bottom sediments of the Laptev Sea and role of anaerobic oxidation of methane during its formation,” Zap. Ross. Mineral. O-va 144 (4), 61–75 (2015).

    Google Scholar 

  7. 7.

    A. Yu. Lein, “Authigenic carbonate formation in the ocean,” Lithol. Miner. Resour. 39, 1–30 (2004).

    Article  Google Scholar 

  8. 8.

    A. Yu. Lein and M. V. Ivanov, Biogeochemical Cycle of Methane in the Ocean (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  9. 9.

    A. Yu. Lein, P. N. Makkaveev, A. S. Savvichev, M.D. Kravchishina, N. A. Belyaev, O. M. Dara, M. S. Ponyaev, E. E. Zakharova, A. G. Rozanov, M. V. Ivanov, and M. V. Flint, “Transformation of suspended particulate matter into sediment in the Kara Sea in September of 2011,” Oceanology (Engl. Transl.) 53, 570–606 (2013).

    Google Scholar 

  10. 10.

    A. Yu. Lein, I. I. Rusanov, N. V. Pimenov, A. S. Savvichev, Yu. M. Miller, G. A. Pavlova, and M. V. Ivanov, “Biogeochemical processes of the sulfur and carbon cycles in the Kara Sea,” Geochem. Int. 34, 925–941 (1996).

    Google Scholar 

  11. 11.

    A. P. Lisitzin and V. P. Petelin, “The method of preliminary processing of samples of marine sediments aboard a vessel,” Tr. Inst. Okeanol., Akad. Nauk SSSR 19, 240–251 (1956).

    Google Scholar 

  12. 12.

    N. N. Romanovskii and H.-W. Hubberten, “The permafrost zone and zone of stability of gas hydrates on the shelf of Laptev Sea: the decade Russian–German research results,” Kriosfera Zemli 10 (3), 61–68 (2006).

    Google Scholar 

  13. 13.

    A. S. Savvichev, E. E. Zakharova, E. F. Veslopolova, I. I. Rusanov, A. Yu. Lein, and M. V. Ivanov, “Microbial processes of the carbon and sulfur cycles in the Kara Sea,” Oceanology (Engl. Transl.) 50, 893–908 (2010).

    Google Scholar 

  14. 14.

    S. V. Stepanova, A. A. Polukhin, and A. V. Kostyleva, “Hydrochemical structure of waters in the eastern part of the Laptev Sea in the autumn of 2015,” Okeanologiya (Moscow) 57, (2017).

  15. 15.

    I. N. Sukhanova, M. V. Flint, E. Yu. Georgieva, et al., “Structure of phytoplankton communities in the eastern part of the Kara Sea,” Okeanologiya (Moscow) 57, (2017).

  16. 16.

    O. V. Shishkina, Geochemistry of Marine and Ocean Silt Waters (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  17. 17.

    J. Greinert and A. Derkachev, “Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: implications of a venting-related ikaite/glendonite formation,” Mar. Geol 204, 129–144 (2004).

    Article  Google Scholar 

  18. 18.

    L. A. Kodina, V. G. Tokarev, L. N. Vlasova, and G. S. Korobeinic, “Contribution of biogenic methane to ikait formation in the Kara Sea: evidence from the stall carbon isotope geochemistry,” Proc. Marine Sci. 6, 349–374 (2003).

    Google Scholar 

  19. 19.

    L. A. Kodina, V. G. Tokarev, L. N. Vlasova, and T. N. Pribylova, “Carbonate minerals ikaite and glendonite carbonate nodules in Holocene Kara Sea sediments: geological and isotopic evidence,” Rep. Pol. Mar. Res. 393, 189–196 (2001).

    Google Scholar 

  20. 20.

    V. M. Kuptsov and A. P. Lisitzin, “Radiocarbon of Quaternary along shore and bottom deposits of the Lena River and the Laptev Sea sediments,” Mar. Chem. 53, 301–311 (1996).

    Article  Google Scholar 

  21. 21.

    H. Pauly, “Ikait, a new mineral from Greenland Arctic,” Arctic 16 (4), 263–264 (1963). doi 10.14430/arctic3545

    Article  Google Scholar 

  22. 22.

    C. J. Schubert, D. Nürnberg, N. Scheele, et al., “13C isotope depletion in ikaite crystals: evidence for methane release from the Siberian shelves?” Geo-Mar. Lett. 17, 169–174 (1997).

    Article  Google Scholar 

  23. 23.

    D. J. Shearman, A. McGugan, C. Stein, and A. J. Smith, “Ikait, CaCO3 · 6H2O, precursor of the thinolites in the Quaternary tufas and tufa mounds of the Lahontak and Mono Lake basins, western United States,” GSA Bull. 101, 913–917 (1989).

    Article  Google Scholar 

  24. 24.

    E. Suess, W. Balzer, K.-F. Hesse, et al., “Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic shelf: precursors of glendonites,” Science 216, 1128–1131 (1982).

    Article  Google Scholar 

  25. 25.

    E. Taldenkova, H. A. Bauch, A. Stepanova, et al., “Postglacial to Holocene history of the Laptev Sea shelf as reflected in molluskan, ostracodal, and foraminiferal faunes,” Global Planet. Change, No. 4, 223–251 (2005).

    Article  Google Scholar 

  26. 26.

    J. A. Welhan and Y. E. Lupton, “Light hydrocarbon gasses in Guaymas Basin hydrothermal fluids: thermogenic versus abiogenic origin,” Am. Assoc. Petrol. Geol. Bull. 71, 215–223 (1987).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. D. Kravchishina.

Additional information

Original Russian Text © M.D. Kravchishina, A.Yu. Lein, A.S. Savvichev, L.E. Reykhard, O.M. Dara, M.V. Flint, 2017, published in Okeanologiya, 2017, Vol. 57, No. 1, pp. 194–213.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kravchishina, M.D., Lein, A.Y., Savvichev, A.S. et al. Authigenic Mg-calcite at a cold methane seep site in the Laptev Sea. Oceanology 57, 174–191 (2017). https://doi.org/10.1134/S0001437017010064

Download citation