, Volume 57, Issue 2, pp 328–336 | Cite as

Age of the Scan Basin (Scotia Sea)

  • Al. A. Schreider
  • A. A. Schreider
  • J. Galindo-Zaldivar
  • A. Maldonado
  • A. E. Sazhneva
  • E. I. Evsenko
Marine Geology


Integrated geological and geophysical analysis of the anomalous magnetic field along with the previously unpublished profiles of Spanish expeditions onboard the R/V Hesperides and international databases of geomagnetic data processed in the context of the global tectonics concepts made it possible to identify paleomagnetic anomalies C11–C15 and compile the first map of the bottom geochronology of the Scan Basin. Unlike in earlier known publications, the paleoaxis of spreading does extend northeast, but approximately at an angle of 345°. According to calculations, spreading began 35.294‒35.706 Ma ago during chron C15r, and the spreading paleoaxis was abandoned 29.527‒29.970 Ma ago during chron C11n.2n. Thus, the destruction of the American–Antarctic bridge in the region joining the Bruce and Discovery banks with formation of oceanic crust in the Scan Basin started about 36 Ma ago. Regular spreading of the bottom has been continuing for about 6 Ma at a average rate close to 1.8 cm/year.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Bulychev, D. A. Gilod, E. Yu. Kulikov, and A. A. Schreider, “Analysis of a layer magnetization,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 5, 59–67 (1997).Google Scholar
  2. 2.
    A. V. Zhivago, “Morphological structure of the bottom of southwestern Atlantic and Scotia Sea,” Tr. Inst. Okeanol., Akad. Nauk SSSR 126, 137–171 (1990).Google Scholar
  3. 3.
    G. B. Udintsev, G. V. Shenke, T. Shene, et al., “Structure of the Scotia Sea bottom, West Antarctic,” Dokl. Earth Sci. 371, 411–415 (2000).Google Scholar
  4. 4.
    V. E. Khain, Tectonics of the Continents and Oceans (Nauchnyi Mir, Moscow, 2001) [in Russian].Google Scholar
  5. 5.
    A. A. Schreider, “Magnetism of the ocean crust and linear paleomagnetic anomalies,” Fiz. Zemli, No. 6, 59–70 (1992).Google Scholar
  6. 6.
    A. A. Schreider, A. A. Bulychev, Al. A. Schreider, D. A. Gilod, J. Galindo-Zaldívar, and A. Maldonado, “Geochronology of the Phoenix Ridge, South Pacific Ocean,” Oceanology (Engl. Transl.) 43 (2), 263–269 (2003).Google Scholar
  7. 7.
    A. A. Schreider, A. A. Bulychev, J. Galindo-Zaldívar, A. Maldonado, and Al. A. Schreider, “Geochronology of the East Scotia Ridge in the Scotia Sea,” Oceanology (Engl. Transl.) 43 (4), 572–577 (2003).Google Scholar
  8. 8.
    A. A. Schreider, Al. A. Schreider, A. N. Boiko, J. Galindo-Zaldívar, A. Maldonado, and E. I. Evsenko, “Peculiarities of the kinematics of the west Scotia midoceanic ridge,” Oceanology (Engl. Transl.) 51 (1), 170–182 (2011).Google Scholar
  9. 9.
    A. A. Schreider, G. L. Kashintsev, Al. A. Schreider, A. A. Bulychev, J. Galindo-Zaldívar, and A. Maldonado, “Geochronology of the American-Antarctic Ridge,” Oceanology (Engl. Transl.) 46 (1), 114–122 (2006).Google Scholar
  10. 10.
    A. A. Schreider, Al. A. Schreider, G. L. Kashintsev, J. Galinado-Zaldivar, A. Maldonado, A. N. Boiko, and E. I. Evsenko, “Peculiarities of the East Scotia ridge’s geochronology,” Oceanology (Engl. Transl.) 51 (6), 1047–1060 (2011).Google Scholar
  11. 11.
    Al. A. Schreider, A. A. Schreider, J. Galindo-Zaldívar, A. Maldonado, and Y. Martos-Martin, “Initial phase of the West Scotia mid-oceanic ridge opening,” Oceanology (Engl. Transl.) 52 (4), 540–544 (2012).Google Scholar
  12. 12.
    Al. A. Schreider, A. A. Schreider, and E. I. Evsenko, “The stages of the development of the basin of the Bransfield Strait,” Oceanology (Engl. Transl.) 54 (3), 365–373 (2014).Google Scholar
  13. 13.
    P. Barker, Tectonic Framework of the East Scotia Sea. Back-Arc Basins: Tectonic and Magmatism (Plenum, New York, 1995), pp. 281–314.Google Scholar
  14. 14.
    P. Barker, “A spreading center in the east Scotia Sea,” Earth Planet Sci. Lett. 15, 123–132 (1972).CrossRefGoogle Scholar
  15. 15.
    P. Barker, “Scotia Sea regional tectonic evolution: implications for mantle flow and paleocirculation,” Earth Science Rev. 55, 1–39 (2001).CrossRefGoogle Scholar
  16. 16.
    P. Barker, “The Cenozoic subduction history of the Pacific Margin of the Antarctic Peninsula: ridge cresttrench interactions,” J. Geol. Soc. Lond. 139, 787–801 (1982).CrossRefGoogle Scholar
  17. 17.
    P. Barker, L. Lawver, and R. Larter, “Heat-flow determinations of basement age in small oceanic basins of the southern central Scotia Sea,” Geol. Soc. London Spec. Publ., (2013). doi doi 10.1144/SP381.3Google Scholar
  18. 18.
    F. Bohoyo, J. Galindo-Zaldívar, A. Jabaloy, et al., “Extensional deformation and development of deep basins associated with the transcurrent fault zone of the Scotia-Antarctic plate boundary,” Geol. Soc. Lond. Spec. Publ. 290, 203–217 (2007).CrossRefGoogle Scholar
  19. 19.
    B. Brown, C. Gaina, and R. Müller, “Circum-Antarctic palaeobathymetry: illustrated examples from Cenozoic to recent times,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 231, 158–168 (2006).CrossRefGoogle Scholar
  20. 20.
    M. Catalan, J. Galindo-Zaldívar, J. Davila, et al., “Initial stages of oceanic spreading in the Bransfield Rift from magnetic and gravity data analysis,” Tectonophysics 585, 102–112 (2013).CrossRefGoogle Scholar
  21. 21.
    D. Civile, E. Lodolo, A. Vuan, and M. Loreto, “Tectonics of the Scotia–Antarctica plate boundary constrained from seismic and seismological data,” Tectonophysics 550–553, 17–34 (2012).CrossRefGoogle Scholar
  22. 22.
    W. Cuningham, I. Dalziel, T. Lee, and L. Lawver, “Southernmost America-Antarctic peninsula relative plate motion since 84 Ma: implications for the tectonic evolution of the Scotia arc region,” J. Geophys. Res. 100, 8257–8266 (1995).CrossRefGoogle Scholar
  23. 23.
    M. De Wit, “The evolution of the Scotia Arc as a key to the reconstruction of southwestern Gondwanaland,” Tectonophysics 37, 53–81 (1977).CrossRefGoogle Scholar
  24. 24.
    L. Drehmer, A. Maldonado, J. Galindo-Zaldívar, et al., “Bacia Dove (Mar de Scotia–Antarctica) processamento e interpretacao de novos datos de seismica 2d,” Proceedings of the Ninth International Congr. of the Brazilian Geophysical Society (Salvador, 2005).Google Scholar
  25. 25.
    G. Eagles, “The age and origin of the central Scotia Sea,” Geophys. J. Int. 183, 587–600 (2010).CrossRefGoogle Scholar
  26. 26.
    G. Eagles, R. Livermore, and P. Morris, “Small basins in the Scotia Sea: the Eocene Drake Passage gateway,” Earth Planet. Sci. Lett. 242, 343–353 (2006).CrossRefGoogle Scholar
  27. 27.
    G. Eagles and R. Livermore, “Opening history of Powell Basin, Antarctic Peninsula,” Mar. Geol. 185, 195–205 (2002).CrossRefGoogle Scholar
  28. 28.
    G. Eagles and A. Vaughan, “Gondwana breakup and plate kinematics: business as usual,” Geophys. Res. Lett. 36, L10302 (2009).CrossRefGoogle Scholar
  29. 29.
    S. Fretzdorff, R. Livermore, C. Devey, et al., “Petrogenesis of the back-arc East Scotia Ridge, South Atlantic Ocean,” J. Petrol. 43, 1435–1467 (2002)CrossRefGoogle Scholar
  30. 30.
    S. Fretzdorff, T. Worthington, K. Haase, et al., “Magmatism in the Bransfield Basin: rifting of the South Shetland Arc?” J. Geophys. Res. 109, (2004).Google Scholar
  31. 31.
    J. Galindo-Zaldívar, J. C. Balanyá, F. Bohoyo, et al., “Active crustal fragmentation along the Scotia-Antarctic plate boundary east of the South Orkney Microcontinent (Antarctica),” Earth Planet. Sci. Lett. 204, 33–46 (2002).CrossRefGoogle Scholar
  32. 32.
    R. Geletti, E. Lodolo, A. Schreider, and A. Polonia, “Seismic structure and tectonics of the Shackleton Fracture Zone (Drake Passage, Scotia Sea),” Mar. Geophys. Res. 26, 17–28 (2005).CrossRefGoogle Scholar
  33. 33.
    E. Gracia, M. Canals, M. Ferran, et al., “Morphostructure and evolution of the central and eastern Bransfield basin (NW Antarctic Peninsula),” Mar. Geophys. Res. 18, 429–448 (1996).CrossRefGoogle Scholar
  34. 34.
    F. Gradstein, J. Ogg, M. Schmitz, and G. Ogg, The Geologic Timescale 2012 (Elsevier, Amsterdam, 2012).Google Scholar
  35. 35.
    F. Hernandez-Molina, F. Bohoyo, A. Naveira, et al., “The Scan Basin evolution: oceanographic consequences of the deep connection between the Weddell and Scotia seas (Antarctica),” in U.S. Geological Survey Extended Abstracts (Washington, DC, 2007), pp. 1–4.Google Scholar
  36. 36.
    I. Hill and P. Barker, “Evidence for Miocene back arc spreading in the central Scotia Sea,” Geophys. J. R. Astron. Soc. 63, 427–440 (1980).CrossRefGoogle Scholar
  37. 37.
    R. Larter, L. Vanneste, P. Morris, and D. Smythe, “Structure and tectonic evolution of the South Sandwich arc,” Geol. Soc. Lond. Spec. Publ. 219, 255–284 (2003).CrossRefGoogle Scholar
  38. 38.
    R. Livermore, A. Nankivell, G. Eagles, and P. Morris, “Palaeogene opening of Drake Passage,” Earth Planet. Sci. Lett. 236, 459–470 (2005).CrossRefGoogle Scholar
  39. 39.
    F. Lobo, F. Hernández-Molina, F. Bohoyo, et al., “Furrows in the southern Scan Basin, Antarctica: interplay between tectonic and oceanographic influences,” Geom. Lett. 31, 451–464 (2011).CrossRefGoogle Scholar
  40. 40.
    E. Lodolo, A. Civile, A. Vuan, et al., “The Scotia–Antarctica plate boundary from 35°W to 45°W,” Earth Planet. Sci. Lett. 293, 200–215 (2010).CrossRefGoogle Scholar
  41. 41.
    A. Maldonado, F. Bohoyo, J. Galindo-Zaldívar, et al., “Cenozoic growth patterns and paleoceanography of the ocean basins near the Scotia-Antarctic plate boundary,” Boll. Geofis. 51, 227–231 (2010).Google Scholar
  42. 42.
    A. Maldonado, F. Bohoyo, J. Galindo-Zaldívar, et al., “A model of oceanic development by ridge jumping: Opening of the Scotia Sea,” Global Planet. Change 17, 127–135 (2015).Google Scholar
  43. 43.
    K. Marks, W. Smith, and D. Sandwell, “Evolution of errors in the altimetric bathymetry model used by Google Earth and GEBCO,” Mar. Geophys. Res. 31, 223–238 (2010).CrossRefGoogle Scholar
  44. 44.
    Y. Martos, A. Maldonado, F. Lobo, et al., “Tectonics and palaeoceanographic evolution recorded by contourite features in southern Drake Passage (Antarctica),” Mar. Geol. 343, 76–91 (2013).CrossRefGoogle Scholar
  45. 45.
    M. Prieto, M. Canals, G. Ercilla, and M. Batist, “Structure and geodynamic evolution of the Central Bransfield Basin (NW Antarctica) from seismic reflection data,” Mar. Geol. 149, 17–38 (1998).CrossRefGoogle Scholar
  46. 46.
    P. Ruano, F. Bohoyo, J. Galindo-Zaldívar, et al., “Mass transport processes in the southern Scotia Sea: evidence of paleoearthquakes,” Global Planet. Change 123, 374–391 (2014).CrossRefGoogle Scholar
  47. 47.
    W. Smith and D. Sandwell, “Global seafloor topography from satellite altimetry and ship depth soundings,” Science 277, 1957–1962 (1997).Google Scholar
  48. 48.
    C. Verard, K. Flores, and G. Stampfli, “Geodynamic reconstructions of the South America–Antarctica plate system,” J. Geodyn. 53, 43–60 (2012).CrossRefGoogle Scholar
  49. 49.
    A. Vuan, E. Lodolo, G. Panza, and C. Sauli, “Crustal structure beneath Discovery Bank in the Scotia Sea from group velocity tomography and seismic reflection data,” Ant. Sci. 17, 97–106 (2005).CrossRefGoogle Scholar
  50. 50.
    Measured and estimated seafloor topography, 2014. Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • Al. A. Schreider
    • 1
  • A. A. Schreider
    • 2
  • J. Galindo-Zaldivar
    • 3
  • A. Maldonado
    • 4
  • A. E. Sazhneva
    • 2
  • E. I. Evsenko
    • 2
  1. 1.Research Institute of Economics and Management in Gas Industry Company Ltd.MoscowRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  3. 3.University of GranadaGranadaSpain
  4. 4.Andalusia Institute of Earth SciencesGranadaSpain

Personalised recommendations