Skip to main content

Causes of the great mass extinction of marine organisms in the Late Devonian

Abstract

The second of the five great mass extinctions of the Phanerozoic occurred in the Late Devonian. The number of species decreased by 70–82%. Major crises occurred at the Frasnian–Famennian and Devonian–Carboniferous boundary. The lithological and geochemical compositions of sediments, volcanic deposits, impactites, carbon and oxygen isotope ratios, evidence of climate variability, and sea level changes reflect the processes that led the critical conditions. Critical intervals are marked by layers of black shales, which were deposited in euxinic or anoxic environments. These conditions were the main direct causes of the extinctions. The Late Devonian mass extinction was determined by a combination of impact events and extensive volcanism. They produced similar effects: emissions of harmful chemical compounds and aerosols to cause greenhouse warming; darkening of the atmosphere, which prevented photosynthesis; and stagnation of oceans and development of anoxia. Food chains collapsed and biological productivity decreased. As a result, all vital processes were disturbed and a large portion of the biota became extinct.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. S. Barash, “Causes and prime causes of mass biotic extinctions in the Phanerozoic,” Dokl. Earth Sci. 445 (4), 925–928 (2012).

    Article  Google Scholar 

  2. 2.

    M. S. Barash, “Interaction of the reasons for the mass biota extinctions in the Phanerozoic,” Oceanology (Engl. Transl.) 53 (6), 739–749 (2013).

    Google Scholar 

  3. 3.

    K. K. Khazanovich-Vul’f, Diatreme Trails of Astrobleme Structures or “Bolide Model” of Kimberlite Pipe Formation (Geomaster, Petrozavodsk, 2007) [in Russian].

    Google Scholar 

  4. 4.

    T. J. Algeo, “Can marine anoxic events draw down the trace element inventory of seawater?” Geology 32, 1057–1060 (2004).

    Article  Google Scholar 

  5. 5.

    T. J. Algeo and E. Ingall, “Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2org,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 256, 130–155 (2007).

    Article  Google Scholar 

  6. 6.

    N. C. Arens and I. D. West, “Press-pulse: a general theory of mass extinction?” Paleobiology 34 (4), 456–471 (2008).

    Article  Google Scholar 

  7. 7.

    O. Averbuch, N. Tribovillard, X. Devleeschouwer, et al., “Mountain building-enhanced continental weathering and carbon burial as major causes for climatic cooling at the Frasnian–Famenian boundary (c. 376 Ma)?” Terra Nova 17, 25–34 (2005).

    Article  Google Scholar 

  8. 8.

    A. K. Baksi, “40Ar/39Ar ages of flood basalt provinces in Russia and China and their possible link to global faunal extinction events: a cautionary tale regarding alteration and loss of 40Ar,” J. Asian Earth Sci. 84, 118–130 (2014).

    Article  Google Scholar 

  9. 9.

    J. F. Becq-Giraudon, O. Rouzeau, E. Goachet, and S. Solages, “Impact hypervéloce d’une météorite géante á l’origine de la dépression circulaire d’Aorounga au Tchad (Afrique),” Compt. Rend. Acad. Sci. Paris. 315, 83–88 (1992).

    Google Scholar 

  10. 10.

    R. A. Berner, “A model for atmospheric CO2 over Phanerozoic time,” Am. J. Sci. 291, 339–376 (1991).

    Article  Google Scholar 

  11. 11.

    A.-V. Bojar, F. Neubauer, and C. Koeberl, “Geochemical record of Late Devonian to Early Carboniferous events, Palaeozoic of Graz, eastern Alps, Austria,” Geol. Soc. Spec. Publ. 376 (1), 87–108 (2013).

    Article  Google Scholar 

  12. 12.

    D. P. G. Bond, M. Zaton, P. B. Wignall, and L. Marynowski, “Evidence for shallow-water “Upper Kellwasser” anoxia in the Frasnian–Famennian reefs of Alberta, Canada,” Lethaia 46 (3), 355–368 (2013).

    Article  Google Scholar 

  13. 13.

    W. Buggish and M. M. Joachimski, “Carbon isotope stratigraphy of the Devonian of Central and Southern Europe,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 240, 68–88 (2006).

    Article  Google Scholar 

  14. 14.

    S. K. Carmichael, J. A. Waters, T. J. Suttner, et al., “A new model for the Kellwasser Anoxia Events (Late Devonian): shallow water anoxia in an open oceanic setting in the Central Asian Orogenic Belt,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 399, 394–403 (2014).

    Article  Google Scholar 

  15. 15.

    D. Chen, J. Wang, G. Racki, et al., “Large sulphur isotopic perturbations and oceanic changes during the Frasnian–Famennian transition of the Late Devonian,” J. Geol. Soc. London. 170, 465–476 (2013).

    Article  Google Scholar 

  16. 16.

    S. Clark, J. Day, B. Ellwood, et al., “Astronomical tuning of integrated upper Famennian–Early Carboniferous faunal, carbon isotope and high resolution magnetic susceptibility records: Western Illinois basin,” Subcomm. Devonian Stratigr. Newslett., No. 24, 27–35 (2009).

    Google Scholar 

  17. 17.

    P. Claeys and J.-G. Casier, “Microtektite-like glass associated with the Frasnian–Famennian boundary mass extinction,” Earth Planet. Sci. Lett. 122, 303–315 (1994).

    Article  Google Scholar 

  18. 18.

    P. Copper, “Frasnian–Famennian mass extinction and cold-water oceans,” Geology 14, 835–839 (1986).

    Article  Google Scholar 

  19. 19.

    V. Courtillot, V. A. Kravchinsky, X. Quidelleur, et al., “Preliminary dating of the Viluy traps (Eastern Siberia): eruption at the time of Late Devonian extinction events?” Earth Planet. Sci. Lett. 300, 239–245 (2010).

    Article  Google Scholar 

  20. 20.

    B. D. Cramer and M. R. Saltzman, “Early Silurian paired δ13Ccarb and δ13Corg analyses from the midcontinent of North America: implications for paleoceanography and paleoclimate,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 256, 195–203 (2007).

    Article  Google Scholar 

  21. 21.

    D. DeVleeschouwer, M. Rakocinski, G. Racki, et al., “The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland),” Earth Planet. Sci. Lett. 365, 25–37 (2013).

    Article  Google Scholar 

  22. 22.

    Earth Impact Database, University of New Brunswick, Retrieved September 18, 2011. http://www.passc.net/EarthImpactDatabase/index.html.

  23. 23.

    P. Filipiak and G. Racki, “Proliferation of abnormal palynoflora during the end-Devonian biotic crisis,” Geol. Quart. 54, 1–14 (2010).

    Google Scholar 

  24. 24.

    M. H. M. Gharaie, R. Matsumoto, Y. Kakuwa, and P. G. Milroy, “Late Devonian facies variety in Iran: volcanism as a possible trigger of the environmental perturbation near the Frasnian–Famennian boundary,” Geol. Quart. 48 (4), 323–332 (2004).

    Google Scholar 

  25. 25.

    M. Gillman and H. Erenler, “The galactic cycle of extinction,” Int. J. Astrobiol. 7 (1), 17–26 (2008).

    Article  Google Scholar 

  26. 26.

    C. Girard, E. Robin, R. Rocchia, et al., “Search for impact remains at the Frasnian-Famennian boundary in the stratotype area, southern France,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 132 (1–4), 391–397 (1997).

    Article  Google Scholar 

  27. 27.

    A. Hallam and P. B. Wignall, Mass Extinctions and Their Aftermath (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  28. 28.

    A. S. Horowitz and J. F. Pachut, “Specific, generic, and familial diversity of Devonian bryozoans,” J. Paleontol. 67, 42–52 (1993).

    Article  Google Scholar 

  29. 29.

    M. R. House, “Ammonoid extinction events,” Philos. Trans._R. Soc., B 325, 307–326 (1989).

    Article  Google Scholar 

  30. 30.

    International Chronostratigraphic Chart, 2013. http://www.stratigraphy.org/ICSchart/ChronostratChart2013-01.pdf.

  31. 31.

    M. M. Joachimski, S. Breisig, W. Buggisch, et al., “Devonian climate and reef evolution: Insights from oxygen isotopes in apatite,” Earth Planet. Sci. Lett. 284, 599–609 (2009).

    Article  Google Scholar 

  32. 32.

    J. G. Johnson, G. Klapper, and C. A. Sandberg, “Devonian Eustatic fluctuations in Euramerica,” Geol. Soc. Am. Bull. 96, 567–587 (1985).

    Article  Google Scholar 

  33. 33.

    K. Kaiho, S. Yatsu, P. Gorjan, et al., “A forest fire and soil erosion event during the Late Devonian mass extinction,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 392 (15), 272–280 (2013).

    Article  Google Scholar 

  34. 34.

    S. I. Kaiser, R. T. Becker, T. Steuber, and S. Z. Aboussalam, “Climate-controlled mass extinctions, facies, and sea-level changes around the Devonian–Carboniferous boundary in the eastern Anti-Atlas (SE Morocco),” Palaeogeogr., Palaeoclimatol., Palaeoecol. 310, 340–364 (2011).

    Article  Google Scholar 

  35. 35.

    S. I. Kaiser, T. Steuber, and R. T. Becker, “Environmental change during the Late Famennian and Early Tournaisian (Late Devonian-Early Carboniferous): implications from stable isotopes and conodont biofacies in southern Europe,” Geol. J. 43, 241–260 (2008).

    Article  Google Scholar 

  36. 36.

    J. Kazmierczak, B. Kremer, and G. Racki, “Late Devonian marine anoxia challenged by benthic cyanobacterial mats,” Geobiology 10, 371–383 (2012).

    Article  Google Scholar 

  37. 37.

    C. Koeberl, W. U. Reimold, G. Cooper, et al., “Aorounga and Gweni Fada impact structures, Chad: remote sensing, and petrography and geochemistry of target rocks,” Meteor. Planet. Sci. 41, 1455–1471 (2005).

    Article  Google Scholar 

  38. 38.

    N. J. Kusznir, A. Kovkhuto, and R. A. Stephenson, “Syn-rift evolution of the Pripyat Trough: constraints from structural and stratigraphic modeling,” Tectonophysics 268, 221–231 (1996).

    Article  Google Scholar 

  39. 39.

    M. I. Kuzmin, V. V. Yarmolyuk, and V. A. Kravchinsky, “Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province,” Earth-Sci. Rev. 102, 29–59 (2010).

    Article  Google Scholar 

  40. 40.

    X. P. Ma and S. L. Bai, “Biological, depositional, microspherule, and geochemical records of the Frasnian/Famennian boundary beds, South China,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 181, 325–346 (2002).

    Article  Google Scholar 

  41. 41.

    L. Marynowski, M. Zato, M. Rakociski, et al., “Deciphering the upper Famennian Hangenberg Black Shale depositional environments based on multi-proxy record,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 346–347, 66–86 (2012).

    Article  Google Scholar 

  42. 42.

    G. R. McGhee Jr., The Late Devonian Mass Extinction: The Frasnian–Famennian Crisis (Columbia Univ. Press, New York, 1996).

    Google Scholar 

  43. 43.

    G. R. McGhee Jr., “The Late Devonian (Frasnian/Famenian) mass extinction: a proposed test of the glaciation hypothesis,” Geol. Quart. 58 (2, 263–268 (2014).

    Google Scholar 

  44. 44.

    A. V. Mikheeva, The full catalogue of the Earth’s impact structures, 2013. http://labmpg.sscc.ru/impact/index1.html.

  45. 45.

    P. M. Myrow, J. Ramezani, A. E. Hanson, et al., “High-precision U-Pb age and duration of the latest Devonian (Famennian) Hangenberg event, and its implications,” Terra Nova 26, 222–229 (2014).

    Article  Google Scholar 

  46. 46.

    P. M. Myrow, J. V. Strauss, J. R. Creveling, et al., “A carbon isotopic and sedimentological record of the latest Devonian (Famennian) from the Western U.S. and Germany,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 306, 147–159 (2011).

    Article  Google Scholar 

  47. 47.

    J. R. Morrow and C. A. Sandberg, “Late Devonian Alamo Event, Nevada, USA; Multiple evidence offplatform marine impact,” Lunar Planet. Inst. Contrib., No. 1167, (2003).

  48. 48.

    A. E. H. Pedder, “The rugose coral record across the Frasnian–Famennian boundary,” Geol. Soc. Am. Spec. Pap. 190, 485–490 (1982).

    Google Scholar 

  49. 49.

    P. E. Playford, D. J. McLaren, C. J. Orth, et al., “Iridium anomaly in the Upper Devonian of the Canning Basin, Western Australia,” Science. 226 (4673), 437–439 (1984).

    Article  Google Scholar 

  50. 50.

    J. Ricci, X. Quidelleur, V. Pavlov, et al., “New 40Ar/39Ar and K–Ar ages of the Viluy traps (Eastern Siberia): further evidence for a relationship with the Frasnian–Famennian mass extinction,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 386, 531–540 (2013).

    Article  Google Scholar 

  51. 51.

    L. Riquier, N. Tribovillard, O. Averbuch, et al., “The Late Frasnian Kellwasser horizons of the Harz Mountains different mechanisms,” Chem. Geol. 233, 137–155 (2006).

    Article  Google Scholar 

  52. 52.

    C. A. Sandberg, J. R. Morrow, and W. Ziegler, “Late Devonian sea-level changes, catastrophic events, and mass extinctions,” in Catastrophic Events and Mass Extinctions: Impacts and Beyond, Ed. by C. Koeberl and K. G. MacLeod (Geological Society of America, Boulder, 2002), Vol. 356, pp. 473–487.

    Google Scholar 

  53. 53.

    C. R. Scotese, Quicktime Computer Animations, PALEOMAP Project (University of Texas at Arlington, Arlington, TX, 1998).

    Google Scholar 

  54. 54.

    A. B. Veimarn and S. A. Korneeva, “Global geological events at the Frasnian–Famennian boundary,” Byull. Mosk. O-va. Ispyt. Prirod., Otd. Geol. 82 (1), 48–68 (2007).

    Google Scholar 

  55. 55.

    M. Wilson and Z. M. Lyashkevich, “Magmatism and the geodynamics of rifting of the Pripyat–Dniepr–Donets rift, East European Platform,” Tectonophysics 268 (1–4), 65–81 (1996).

    Article  Google Scholar 

  56. 56.

    B. Xu, Z. Gu, C. Wang, et al., “Carbon isotopic evidence for the associations of decreasing atmospheric CO2 level with the Frasnian–Famennian mass extinction,” J. Geophys. Res. 117, 1–12 (2012). doi 10.1029/2011JG001847

    Google Scholar 

  57. 57.

    S. Yatsu, K. Kaiho, M. Oba, et al., “Euxinic ocean during the Late Devonian mass extinction inferred from organic compounds,” J. Earth Sci. 21 (1), 94–95 (2010).

    Article  Google Scholar 

  58. 58.

    J. W. Zeng, R. Xu, and X. M. Gong, “Hydrothermal activities and seawater acidification in the Late Devonian FF transition: evidence from geochemistry of rare earth elements,” Sci. China Earth Sci. 54, 540–549 (2011).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. S. Barash.

Additional information

Original Russian Text © M.S. Barash, 2016, published in Okeanologiya, 2016, Vol. 56, No. 6, pp. 946–958.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barash, M.S. Causes of the great mass extinction of marine organisms in the Late Devonian. Oceanology 56, 863–875 (2016). https://doi.org/10.1134/S0001437016050015

Download citation