Skip to main content
Log in

Estimates of entrainment in the Denmark Strait overflow plume from CTD/LADCP data

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

The data of the CTD survey conducted in the Denmark Strait and Irminger Sea in May–June 2009 are used to calculate the vertical profiles of the turbulent overturning scale, which are then used to estimate the dissipation and entrainment rates in the overflow plume. The resulting estimates of the entrainment rate varied widely from 2 × 10–7 to 7 × 10–3 m/s. It is shown that such a wide range of entrainment rates is caused by the intermittency of turbulence. Large turbulent overturning at the interface of the Denmark Strait overflow plume is detected on the vertical temperature, salinity, and potential density profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Monin and R. V. Ozmidov, Ocean Turbulence (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  2. R. V. Ozmidov, “Turbulence exchange in stabile stratified ocean,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 1 (8), 853–860 (1965).

    Google Scholar 

  3. V. T. Paka, B. Rudels, D. Quadfasel, and V. M. Zhurbas, “Measurements of turbulence in the zone of strong bottom currents in the strait of Denmark,” Dokl. Earth Sci. 432 (1), 613–617 (2010).

    Article  Google Scholar 

  4. K. N. Fedorov, Fine Thermohaline Structure of Ocean Water (Gidrometeoizdat, Leningrad, 1976) [in Russian].

    Google Scholar 

  5. L. Arneborg, V. Fiekas, L. Umlauf, and H. Burchard, “Gravity current dynamics and entrainment—a process study based on observations in the Arkona basin,” J. Phys. Oceanogr. 37 (8), 2094–2113 (2007).

    Article  Google Scholar 

  6. J. G. Bruce, “Eddies southwest of the Denmark Strait,” Deep Sea Res., Part I 42 (1), 13–29 (1995).

    Article  Google Scholar 

  7. R. R. Dickson and J. Brown, “The production of North Atlantic deep water: sources, rates, and pathways,” J. Geophys. Res., C: Oceans Atmos. 99 (6), 12319–12341 (1994).

    Article  Google Scholar 

  8. T. M. Dillon, “Vertical overturns: a comparison of Thorpe and Ozmidov length scales,” J. Geophys. Res., C: Oceans Atmos. 87 (12), 9601–9613 (1982).

    Article  Google Scholar 

  9. I. Fer, G. Voet, K. S. Seim, et al., “Intense mixing of the Faroe Bank Channel overflow,” Geophys. Res. Lett. 37, L02604 (2010). doi 10.1029/2009GL041924

    Article  Google Scholar 

  10. J. B. Girton and T. B. Sanford, “Descent and modification of the overflow plume in Denmark Strait,” J. Phys. Oceanogr. 33 (7), 1351–1364 (2003).

    Article  Google Scholar 

  11. G. C. Johnson, R. G. Lueck, and T. B. Sanford, “Stress on the Mediterranean outflow plume: Part II. Turbulent dissipation and shear measurements,” J. Phys. Oceanogr. 24 (10), 2084–2092 (1994).

    Article  Google Scholar 

  12. G. C. Johnson, T. B. Sanford, and M. O. Baringer, “Stress on the Mediterranean outflow plume: Part I. Velocity and water property measurements,” J. Phys. Oceanogr. 24 (10), 2072–2083 (1994).

    Article  Google Scholar 

  13. W. Krauss, “A note on overflow eddies,” Deep Sea Res., Part I 43 (10), 1661–1667 (1996).

    Article  Google Scholar 

  14. T. Osborn, “Estimates of the local rate of vertical diffusion from dissipation measurements,” J. Phys. Oceanogr. 10 (1), 83–89 (1980).

    Article  Google Scholar 

  15. V. Paka, V. Zhurbas, B. Rudels, et al., “Microstructure measurements and estimates of entrainment in the Denmark Strait overflow plume,” Ocean Sci. 9 (6), 1003–1014 (2013).

    Article  Google Scholar 

  16. H. Peters and R. Bokhorst, “Microstructure observations of turbulent mixing in a partially mixed estuary. Part II: Salt flux and stress,” J. Phys. Oceanogr. 31 (4), 1105–1119 (2001).

    Article  Google Scholar 

  17. H. Peters and W. E. Johns, “Mixing and entrainment in the Red Sea outflow plume. Part II: Turbulence characteristics,” J. Phys. Oceanogr. 35 (5), 584–600 (2005).

    Article  Google Scholar 

  18. L. H. Shih, J. R. Koseff, G. N. Ivey, and J. H. Ferziger, “Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations,” J. Fluid Mech. 525, 193–214 (2005).

    Article  Google Scholar 

  19. M. A. Spall and J. F. Price, “Mesoscale variability in the Denmark Strait: the PV outflow hypothesis,” J. Phys. Oceanogr. 28 (8), 1598–1623 (1998).

    Article  Google Scholar 

  20. S. A. Thorpe, “Turbulence and mixing in a Scottish loch,” Philos. Trans. R. Soc., A 286 (1334), 125–181 (1977).

    Article  Google Scholar 

  21. L. Umlauf and L. Arneborg, “Dynamics of rotating shallow gravity currents passing through a channel. Part I: Observation of transverse structure,” J. Phys. Oceanogr. 39 (10), 2385–2401 (2009).

    Article  Google Scholar 

  22. G. Voet and D. Quadfasel, “Entrainment in the Denmark Strait overflow plume by mesoscale eddies,” Ocean Sci. 6 (1), 301–310 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Zhurbas.

Additional information

Original Russian Text © V.M. Zhurbas, V.T. Paka, B. Rudels, D. Quadfasel, 2016, published in Okeanologiya, 2016, Vol. 56, No. 2, pp. 221–229.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhurbas, V.M., Paka, V.T., Rudels, B. et al. Estimates of entrainment in the Denmark Strait overflow plume from CTD/LADCP data. Oceanology 56, 205–213 (2016). https://doi.org/10.1134/S0001437016020223

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437016020223

Keywords

Navigation