Skip to main content
Log in

Excitation of electrokinetic effects at the shallow bottom by surface waves

  • Marine Geology
  • Published:
Oceanology Aims and scope

Abstract

The generation of electric field fluctuations caused by electrokinetic effects observed at the bottoms of shallow basins with low salinity are considered in addition to natural variable ionospheric-magnetospheric electromagnetic fields. The electric field excitation model is considered for the cases with long surface waves and for the case when the wavelength is smaller than the water depth. The model has been mathematically described, and bottom pressure fluctuations caused by surface waves and the values of the electric field generated by these fluctuations as a result of electrokinetic effects have been obtained. It has been indicated that nonlinear effects in standing waves, formed by short progressive waves as well as by long waves, can cause electrokinetic electric fields of the same order of magnitude in the bottom layer. Thus, a method for estimating electrokinetic noise generated by surface waves has been proposed for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Aleksandrov, Ecological Role of Electromagnetism (State Polytechnic University, St. Petersburg, 2010) [in Russian].

    Google Scholar 

  2. L. M. Brekhovskikh, “Acoustic waves under water determined by surface waves in the ocean,” Izv. Ross. Akad. Nauk, Fiz., Atmos. Okeana 2(9), 970–980 (1966).

    Google Scholar 

  3. V. G. Bukhteev, Yu. P. Doronin, M. M. Zubova, et al., Ocean Dynamics (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  4. Yu. P. Doronin and I. A. Stepanyuk, Electromagnetic Field of an Ocean (Russian State Hydro-Meteorological Institute, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  5. N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical Hydromechanics (Fizmatgiz, Moscow, 1963), Part 1.

    Google Scholar 

  6. H. Lacombe, Physical Oceanography (UNESCO, Paris, 1951).

    Google Scholar 

  7. L. M. Milne-Thomson, Theoretical Hydrodynamics (MacMillan, London, 1955).

    Google Scholar 

  8. N. A. Pal’shin, D. V. Yakovlev, A. G. Yakovlev, et al., “Nature of low frequency electric field in transient zone,” in The XVIII International Scientific Conference (School) on Marine Geology (GEOS, Moscow, 2009), Vol. 5, pp. 105–110.

    Google Scholar 

  9. L. I. Sedov, Mechanics of Continuous Medium (Nauka, Moscow, 1976), Vol. 2.

    Google Scholar 

  10. V. V. Shuleikin, Marine Physics (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  11. E. A. Shchukin, A. V. Pertsov, and E. A. Amelina, Colloid Chemistry (Vysshaya Shkola, Moscow, 2004) [in Russian].

    Google Scholar 

  12. V. All`egre, L. Jouniaux, F. Lehmann, et al., “Streaming potential dependence on water-content in Fontainebleau sand,” Geophys. J. Int. 182, 1248–1266 (2010).

    Article  Google Scholar 

  13. S. K. Banerji and S. S. Joshi, “Disturbance of pressure at the bed of a deep sea,” Curr. Sci., 6–7 (1932).

    Google Scholar 

  14. D. Beamish, “Characteristics of near-surface electrokinetic coupling,” Geophys. J. Int. 137, 231–242 (1999).

    Article  Google Scholar 

  15. D. Beamish and R. J. Peart, “Electrokinetic geophysics—a review,” Terra Nova 10, 48–55 (1998).

    Article  Google Scholar 

  16. G. Block, “Electrokinetic wave phenomena in fluid-saturated granular media,” in Proceedings of McMat2005: 2005 Joint ASME/ASCE/SES Conference on Mechanics and Materials (Baton Rouge, Louisiana, USA, 2005), Vol. 264, pp. 1–5.

    Google Scholar 

  17. R. K. Cessaro, “Sources of primary and secondary microseisms,” Bull. Seismol. Soc. Am. 84(1), 142–148 (1994).

    Google Scholar 

  18. J. Darbyshire and E. Okeke, “A study of primary and secondary microseisms recorded in Anglesey,” Geophys. J. R. Astron. Soc. 17, 63–92 (1969).

    Article  Google Scholar 

  19. Y. Gao and H. Hu, “Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium,” Geophys. J. Int. 181, 873–896 (2010).

    Google Scholar 

  20. X. Guichet, L. Jouniaux, and J.-P. Pozzi, “Streaming potential of a sand column in partial saturation conditions,” J. Geophys. Res., B 108(3), 2141 (2003).

    Article  Google Scholar 

  21. M. W. Haartsen and S. R. Pride, “Electroseismic waves from point sources in layered media,” J. Geophys. Res., B 102(11), 24745–24769 (1997).

    Article  Google Scholar 

  22. K. A. Hasselmann, “Statistical analysis of the generation of microseisms,” Rev. Geophys. 1, 177–210 (1963).

    Article  Google Scholar 

  23. H. Hengshan, L. Jiaqi, W. Hongbin, et al., “A comparison between Potapof’s and pride’s equations for seismoelectric waves,” Chin. J. Geophys. 46(1), 142–150 (2003).

    Article  Google Scholar 

  24. T. H. C. Herbers and R. T. Guza, “Nonlinear wave interactions and high-frequency seafloor pressure,” J. Geophys. Res., C: Oceans Atmos. 99(5), 10035–10048 (1994).

    Article  Google Scholar 

  25. H. Hu and Y. Gao, “Electromagnetic field generated by a finite fault due to electrokinetic effect,” J. Geophys. Res., B 116, 08302 (2011).

    Article  Google Scholar 

  26. T. Ishido and H. Mizutani, “Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications,” J. Geophys. Res., B 86(3), 1763–1775 (1981).

    Article  Google Scholar 

  27. T. Ishido and J. W. Pritchett, “Numerical simulation of electrokinetic potentials associated with subsurface fluid flow,” J. Geophys. Res., B 104(7), 15247–15259 (1999).

    Article  Google Scholar 

  28. L. Jouniaux and J.-P. Pozzi, “Permeability dependence of streaming potential in rocks for various fluid conductivities,” Geophys. Res. Lett. 22(4), 485–488 (1995).

    Article  Google Scholar 

  29. L. Jouniaux and T. Ishido, “Electrokinetics in Earth sciences: a tutorial,” Int. J. Geophys., (2011). Article ID 286107.

    Google Scholar 

  30. B. Kroger, U. Yaramanci, and A. Kemna, “Numerical analysis of seismoelectric wave propagation in spatially confined geological units,” Geophys. Prosp., (2012). doi: 10.1111/1365-2478.12020

    Google Scholar 

  31. O. Kuwano, M. Nakatani, and S. Yoshida, “Effect of the flow state on streaming current,” Geophys. Res. Lett. 33, L21309 (2006). doi: 10.1029/2006GL027712

    Article  Google Scholar 

  32. M. S. Longuet-Higgins, “A theory of the origin of microseisms,” Philos. Trans. R. Soc., A 243(857), 1–35 (1950).

    Article  Google Scholar 

  33. M. S. Longuet-Higgins, “Can sea waves cause microseisms?” in Proceedings of Symposium on Microseisms, N.A.S.-N.R.C. Publ. No. 306 (Washington D.C., 1953), pp. 74–86.

    Google Scholar 

  34. B. Lorne, F. Perrier, and J.-P. Avouac, “Streaming potential measurements. 2. Relationship between electrical and hydraulic flow patterns from rock samples during deformation,” J. Geophys. Res., B 104(8), 17879–17896 (1999).

    Article  Google Scholar 

  35. M. Miche, “Mouvements ondulatoires de la mer en profondeur constant ou decroissante,” Ann. Pont. Chaus. 114, 25–78 (1944).

    Google Scholar 

  36. O. V. Mikhailov, M. W. Haartsen, and M. Nafi Toksoz, “Electroseismic investigation of the shallow subsurface: field measurements and numerical modeling,” Geophysics 62(1), 97–105 (1997).

    Article  Google Scholar 

  37. E. A. Nichols, H. F. Morrison, and J. Clarke, “Signals and noise in measurements of low-frequency geomagnetic fields,” J. Geophys. Res., B 93(11), 13743–13754 (1988).

    Article  Google Scholar 

  38. G. Oettinger, V. Haak, and J. C. Larsen, “Noise reduction in magnetotelluric time-series with a new signal-noise separation method and its application to a field experiment in the Saxonian Granulite Massif,” Geophys. J. Int. 146, 659–669 (2001).

    Article  Google Scholar 

  39. D. B. Pengra, S. X. Li, and P. Wong, “Determination of rock properties by low-frequency AC electrokinetics,” J. Geophys. Res., B 104(12), 29485–29508 (1999).

    Article  Google Scholar 

  40. F. Perrier, M. Trique, B. Lorne, et al., “Electric potential variations associate with yearly lake level variations,” Geophys. Res. Lett. 25(11), 1955–1958 (1998).

    Article  Google Scholar 

  41. W. Podney, “Electromagnetic fields generated by ocean waves,” J. Geophys. Res. 80(21), 2977–2990 (1975).

    Article  Google Scholar 

  42. H. Ren, X. Chen, and Q. Huang, “Numerical simulation of co-seismic electromagnetic fields associated with seismic waves due to finite faulting in porous media,” Geophys. J. Int. 188, 925–944 (2012).

    Article  Google Scholar 

  43. A. Revil, P. A. Pezard, and P. W. J. Glover, “Streaming potential in porous media. 1. Theory of the zeta potential,” J. Geophys. Res., B 104(9), 20021–20031 (1999).

    Article  Google Scholar 

  44. A. Revil, H. Schwaegear, M. Cathles, et al., “Streaming potential in porous media. 2. Theory and application to geothermal systems,” J. Geophys. Res., B 104(9), 20033–20048 (1999).

    Article  Google Scholar 

  45. M. R. Sheffer and D. W. Oldenburg, “Three-dimensional modeling of streaming potential,” Geophys. J. Int. 169, 839–848 (2007).

    Article  Google Scholar 

  46. M. Strahser, L. Jouniaux, P. Sailhac, et al., “Dependence of seismoelectric amplitudes on water content,” Geophys. J. Int. 187, 1378–1392 (2011).

    Article  Google Scholar 

  47. V. V. Surkov, S. Uyeda, H. Tanaka, et al., “Fractal properties of medium and seismoelectric phenomena,” J. Geodyn. 33, 477–487 (2002).

    Article  Google Scholar 

  48. V. V. Surkov and H. Tanaka, “Electrokinetic effect in fractal pore media as seismoelectric phenomena,” in Fractal Behaviors of the Earth System, Ed. by V. P. Dimri (Springer-Verlag, New York, 2005), pp. 83–96.

    Chapter  Google Scholar 

  49. M. Trique, F. Perrier, T. Froidefond, et al., “Fluid flow near reservoir lakes inferred from the spatial and temporal analysis of the electric potential,” J. Geophys. Res., B 107(10), 2239 (2002). doi: 10.1029/2001JB000482

    Article  Google Scholar 

  50. C. P. Tsai, T. L. Lee, and J. R. C. Hsu, “Effect of wave non-linearity on the standing-wave-induced seabed response,” Int. J. Numer. Anal. Methods Geomech. 24, 869–892 (2000).

    Article  Google Scholar 

  51. S. Warden, S. Garambois, P. Sailhac, et al., “Curvelet-based seismoelectric data processing,” Geophys. J. Int. 190, 1533–1550 (2012).

    Article  Google Scholar 

  52. U. Weckmann, A. Magunia, and O. Ritter, “Effective noise separation for magnetotelluric single site data processing using a frequency domain selection scheme,” Geophys. J. Int. 161, 635–652 (2005).

    Article  Google Scholar 

  53. Z. Zhu and N. Toksoz, “Curvelet-based seismoelectric data processing,” Geophys. Prosp. 61, 688–700 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Yegorov.

Additional information

Original Russian Text © I.V. Yegorov, N.A. Palshin, 2015, published in Okeanologiya, 2015, Vol. 55, No. 3, pp. 461–469.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yegorov, I.V., Palshin, N.A. Excitation of electrokinetic effects at the shallow bottom by surface waves. Oceanology 55, 417–424 (2015). https://doi.org/10.1134/S0001437015030042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437015030042

Keywords

Navigation