Skip to main content

Advertisement

Log in

Effects of local hydrophysical conditions on the spatial variability of phytoplankton in the White Sea

  • Marine Biology
  • Published:
Oceanology Aims and scope

Abstract

The species composition and biomass of phytoplankton, chlorophyll a concentration (Chl), and hydrophysical characteristics of water masses have been studied in Onega and Kandalaksha bays (Chupa Inlet and Knyazhaya Inlet) of the White Sea at 16 stations June 17–26, 2012. Structural analysis of the phytoplankton community according to the Bray-Curtis similarity index has revealed two groups of stations. The first group united stations in stratified waters in Kandalaksha Bay; all stations located in Onega Bay formed another group. In turn, the stations in Onega Bay were separated into two subgroups corresponding to mixed (MWs) and stratified (SWs) waters. The total phytoplankton biomass and the biomass of diatoms and small unidentified flagellates were higher in Onega Bay. The biomass of dinoflagellates and cryptophytes, as well as Chl, did not differ significantly in Kandalaksha and Onega bays. In Onega Bay, the total phytoplankton biomass, Chl, and contribution of dinoflagellates to the total biomass were higher in SWs than in MWs. The contribution of diatoms was higher in SWs. The study addresses the role of the frontal zones in shaping the structure and distribution of the phytoplankton community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Belevich and L. V. Ilyash, “Picophytoplankton abundance in the Velikaya Salma strait, White Sea,” Microbiology (Moscow) 81 (3), 360–366 (2012).

    Article  Google Scholar 

  2. A. V. Drits, E. G. Arashkevich, A. B. Nikishina, et al., “Role of widespread species of mesozooplankton in depletion of phytoplankton in northern regions of the Kara Sea during autumn,” Okeanologiya (Moscow), 2015, (in press).

    Google Scholar 

  3. L. V. Ilyash, “Picophytoplankton of Kandalaksha Bay of the White Sea,” Vestn. Mosk. Univ., Ser. 16: Biol., No. 2, 49–52 (1998).

    Google Scholar 

  4. L. V. Ilyash, L. S. Zhitina, and V. D. Fedorov, Phytoplankton of the White Sea (Yanus-M, Moscow, 2003) [in Russian].

    Google Scholar 

  5. L. V. Ilyash, I. G. Radchenko, V. P. Shevchenko, A. P. Lisitzin, V. I. Burenkov, A. N. Novigatskiy, V. T. Paka, A. L. Chul’tsova, and A. N. Pantyulin, “Spatial distribution of phytoplankton in the White Sea in the late summer period with regard to the water structure and dynamics,” Oceanology (Engl. Transl.) 51 (6), 993–1003 (2011).

    Google Scholar 

  6. L. V. Ilyash, I. G. Radchenko, V. P. Shevchenko, R. E. Zdorovennov, and A. N. Pantyulin, “Contrasting summer phytoplankton communities in stratified and mixed waters of the White Sea,” Oceanology (Engl. Transl.) 54 (6), 730–738 (2014).

    Google Scholar 

  7. S. G. Kobylyanskii, A. V. Drits, A. V. Mishin, S. G. Pojarkov, V. V. Kremenetsky, S. A. Evseenko, and M. V. Flint, “Small scale distribution of the White Sea herring larvae (Clupea pallasii marisalbi) in relation to hydrophysical features,” Oceanology (Engl. Transl.) 54 (6), 752–762 (2014).

    Google Scholar 

  8. A. N. Pantyulin, “Dynamics, structure, and water masses,” in The White Sea System, Vol. 2: Water Column and Interacting Atmosphere, Cryosphere, River Flow, and Biosphere, Ed. by A. P. Lisitzin (Nauchnyi Mir, Moscow, 2012), pp. 309–379.

    Google Scholar 

  9. T. N. Rat’kova, A. F. Sazhin, and K. N. Kosobokova, “Unicellular inhabitants of the White Sea underice pelagic zone during the early spring period,” Oceanology (Engl. Transl.) 44 (2), 240–246 (2004).

    Google Scholar 

  10. Sukhanova I. N., M. V. Flint, S. A. Mosharov, and V. M. Sergeeva, “Structure of the phytoplankton communities and primary production in the Ob River estuary and over the adjacent Kara Sea shelf,” Oceanology (Engl. Transl.) 50 (5), 743–758 (2010).

    Google Scholar 

  11. B. C. Booth and R. A. Horner, “Microalgae on the Arctic Ocean section, 1994: species abundance and biomass,” Deep Sea Res., Part II 44, 1607–1622 (1997).

    Article  Google Scholar 

  12. C. Callieri, S. M. Karjalainen, and S. Passoni, “Grazing by ciliates and heterotrophic nanoflagellates on picocyanobacteria in Lago Maggiore, Italy,” J. Plankton Res. 24, 785–796 (2002).

    Article  Google Scholar 

  13. K. R. Clarke and R. M. Warwick, Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. (Plymouth Marine Laboratory, Plymouth, 2001).

    Google Scholar 

  14. P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Blackwell, Malden, MA, 1997).

    Google Scholar 

  15. M. V. Flint, I. N. Sukhanova, A. I. Kopylov, et al., “Plankton distribution associated with frontal zone in the vicinity of Pribilof Islands,” Deep-Sea Res., Part II 49, 6069–6093 (2002).

    Article  Google Scholar 

  16. G. E. Fogg, “Some comments on picoplankton and its importance in the pelagic ecosystem,” Aquat. Microb. Ecol. 9, 33–39 (1995).

    Article  Google Scholar 

  17. G. M. Fragoso and W.O. Smith, Jr., “Influence of hydrography on phytoplankton distribution in the Amundsen and Ross Seas, Antarctica,” J. Mar. Syst. 89, 19–29 (2012).

    Article  Google Scholar 

  18. C. A. Heil, P. M. Glibert, and C. L. Fan, Prorocentrum minimum (Pavillard) Schiller — a review of a harmful algal bloom species of growing worldwide importance,” Harmful Algae 4, 449–470 (2005).

    Article  Google Scholar 

  19. H. Hillebrand, C.-D. Dürselen, D. Kirschtel, et al., “Biovolume calculation for pelagic and benthic microalgae,” J. Phycol. 5, 403–424 (1999).

    Article  Google Scholar 

  20. H. Hodal and S. Kristiansen, “The importance of small-celled phytoplankton in spring blooms at the marginal ice zone in the northern Barents Sea,” DeepSea Res., Part II 55, 2176–2185 (2008).

    Article  Google Scholar 

  21. O. Holm-Hansen and B. Riemann, “Chlorophyll a determination: improvements in methodology,” Oikos 30, 438–447 (1978).

    Article  Google Scholar 

  22. A. Kremp and D. M. Anderson, “Factors regulating germination of resting cysts of the spring bloom dinoflagellate Scrippsiella hangoei from the northern Baltic Sea,” J. Plankton Res. 22, 1311–1327 (2000).

    Article  Google Scholar 

  23. A. Kremp, T. Tamminen, and K. Spilling, “Dinoflagellate bloom formation in natural assemblages with diatoms: nutrient competition and growth strategies in Baltic spring phytoplankton,” Aquat. Microb. Ecol. 50, 181–196 (2008).

    Article  Google Scholar 

  24. S. H. Lee and T. E. Whitledge, “Primary and new production in the deep Canada basin during summer 2002,” Polar Biol. 28, 190–197 (2005).

    Article  Google Scholar 

  25. R. W. Litaker, P. A. Tester, C. S. Duke, et al., “Seasonal niche strategy of the bloom-forming dinoflagellate Heterocapsa triquetra,” Mar. Ecol.: Progr. Ser. 232, 45–62 (2002).

    Article  Google Scholar 

  26. R. Margalef, “Life-forms of phytoplankton as survival alternatives in an unstable environment,” Oceanol. Acta 1, 493–509 (1978).

    Google Scholar 

  27. K. Matsuoka and Y. Fukuyo, “Taxonomy of cysts,” in Manual on Harmful Marine Algae, Ed. by G. M. Hallegraeff, D. M. Anderson, and A. D. Cembella (UNESCO, Paris, 1995), No. 33, pp. 281–401.

    Google Scholar 

  28. S. Menden-Deuer and E. J. Lessard, “Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton,” Limnol. Oceanogr. 45, 569–579 (2000).

    Article  Google Scholar 

  29. S. Y. Moon van der Staay, R. De Wachter, and D. Vaulot, “Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity,” Nature 409, 607–610 (2001).

    Article  Google Scholar 

  30. S. B. Moran, M. W. Lomas, R. P. Kelly, et al., “Seasonal succession of net primary productivity, particulate organic carbon export, and autotrophic community composition in the eastern Bering Sea,” Deep-Sea Res., Part II 65–70, 84–97 (2012).

    Article  Google Scholar 

  31. T. H. Parsons, M. Takahashi, and B. Hargrave, Biological Oceanographic Processes (Pergamon, Oxford, 1984).

    Google Scholar 

  32. K. Richardson, S. Markager, E. Buch, et al., “Seasonal distribution of primary production, phytoplankton biomass and size distribution in the Greenland Sea,” DeepSea Res., Part I 52, 979–999 (2005).

    Article  Google Scholar 

  33. J. Rudek, H. Paerl, M. Mallin, et al., “Seasonal and hydrological control of phytoplankton nutrient limitation in the lower Neuse River Estuary, North Carolina,” Mar. Ecol.: Progr. Ser. 75, 133–142 (1991).

    Article  Google Scholar 

  34. M. E. Sabatini, R. Akselman, R. Reta, et al., “Spring plankton communities in the southern Patagonian shelf: Hydrography, mesozooplankton patterns and trophic relationships,” J. Mar. Syst. 94, 33–51 (2012).

    Article  Google Scholar 

  35. R. W. Sanders and R. J. Gast, “Bacterivory by phototrophic picoplankton and nanoplankton in Arctic waters,” FEMS Microbiol. Ecol. 82, 242–253 (2012).

    Article  Google Scholar 

  36. E. B. Sherr, B. F. Sherr, and L. Fessenden, “Heterotrophic protists in the central Arctic Ocean,” DeepSea Res., Part II 44, 1665–1682 (1997).

    Article  Google Scholar 

  37. E. B. Sherr, B. F. Sherr, P. A. Wheeler, et al., “Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean,” Deep-Sea Res., Part I 50, 557–571 (2003).

    Article  Google Scholar 

  38. J. M. Sieburth, V. Smetacek, and J. Lenz, “Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationships to plankton size fractions,” Limnol. Oceanogr. 23, 1256–1263 (1978).

    Article  Google Scholar 

  39. K. Takahashi, J. Onodera, and K. Katsuki, “Significant populations of seven-sided Distephanus (Silicoflagellata) in the sea-ice covered environment of the central Arctic Ocean, summer 2004,” Micropaleontology 55, 313–325 (2009).

    Google Scholar 

  40. R. Terrado, C. Lovejoy, R. Massana, et al., “Microbial food web responses to light and nutrients beneath the coastal Arctic Ocean sea ice during the winter–spring transition,” J. Mar. Syst. 74, 964–977 (2008).

    Article  Google Scholar 

  41. P. G. Verity, C. Y. Robertson, C. R. Tronzo, et al., “Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton,” Limnol. Oceanogr. 37, 1434–1446 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Ilyash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyash, L.V., Belevich, T.A., Stupnikova, A.N. et al. Effects of local hydrophysical conditions on the spatial variability of phytoplankton in the White Sea. Oceanology 55, 216–225 (2015). https://doi.org/10.1134/S0001437015020046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437015020046

Keywords

Navigation