Skip to main content
Log in

Late quaternary distribution of the Cycladophora davisiana radiolarian species: Reflection of possible ventilation of the North Pacific intermediate water during the Last Glacial Maximum

  • Marine Geology
  • Published:
Oceanology Aims and scope

Abstract

A comparison of micropaleontological data on the distribution of the Cycladophora davisiana radiolarian species in the surface sediment layer and the Late Quaternary sediments from the Subarctic Pacific and Far East marginal seas allowed conclusions concerning the possible conditions and occurrence of intermediate waters during the last glacial maximum. We used the modern data on the C. davisiana species, which is a micro-paleontological indicator of the cold oxygen-rich upper intermediate water mass, which is now forming only in the Sea of Okhotsk. The high amount of C. davisiana in sediments of the last glacial maximum may point to the possible formation and expansion of the ventilated intermediate water in the most part of the Subarctic paleo-Pacific: the Bering Sea, the Sea of Okhotsk, within the NW Gyre, and in the Gulf of Alaska.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atlas of the Ocean: Pacific Ocean, Ed. by S. G. Gorshkov (General Office of Geodesy and Mapping of USSR, Moscow, 1974) [in Russian].

    Google Scholar 

  2. A. P. Jouze, Stratigraphic and Paleogeographic Studies in the Northwestern Pacific (Academy of Sciences of USSR, Moscow, 1962) [in Russian].

    Google Scholar 

  3. S. B. Kruglikova, “Radiolarians in the bottom surface sediments of the Okhotsk Sea,” Oceanology (Engl. Transl.) 15(1), 116–122 (1975).

    Google Scholar 

  4. S. B. Kruglikova, “Characteristics of the distribution of Radiolaria in the bottom sediments of the boreal and subtropical zones of the Pacific Ocean during the Pleistocene,” Oceanology (Engl. Transl.) 17(6), 698–704 (1977).

    Google Scholar 

  5. A. Matul and A. Abelmann, “Quaternary water structure of the Sea of Okhotsk based on Radiolarian data,” Dokl. Earth Sci. 381, 1005–1007 (2001).

    Google Scholar 

  6. A. G. Matul, V. V. Mukhina, S. A. Gorbarenko, and V. Yu. Leskov, “The quaternary micropaleontological and lithophysical records in the sediments of the northern part of the Sea of Okhotsk,” Oceanology (Engl. Transl.) 43(4), 551–560 (2003).

    Google Scholar 

  7. A. G. Matul, A. Abelmann, R. Tiedemann, and D. Nürnberg, “Stratigraphy and major paleoenvironmental changes in the Sea of Okhotsk during the last million ears inferred from Radiolarian data,” Oceanology (Engl. Transl.) 49(1), 93–100 (2009).

    Google Scholar 

  8. V. V. Shastina, Candidate’s Dissertation in Geology-Mineralogy (Far Eastern Institute of Geology, Vladivostok, 1993) [in Russian].

    Google Scholar 

  9. A. Abelmann and A. Nimmergut, “Radiolarians in the Sea of Okhotsk and their ecological implication for paleoenvironmental reconstructions,” Deep-Sea Res., Part II 52, 2302–2331 (2005).

    Article  Google Scholar 

  10. K. R. Bjørklund and P. F. Ciesielski, “Ecology, morphology, stratigraphy, and the paleoceanographic significance of Cycladophora davisiana davisiana. Part I: Ecology and morphology,” Mar. Micropaleontol. 24, 71–88 (1994).

    Article  Google Scholar 

  11. N. Biebow, R. Kulinich, and B. V. Baranov, “KOMEX II (Kurile Okhotsk Sea Marine Experiment): cruise report R/V Akademik M.A. Lavrentyev cruise 29, leg 1 and leg 2,” GEOMAR Rep. 110, 92 (2003).

    Google Scholar 

  12. G. R. Bigg, C. D. Clark, and A. L. C. Hughes, “A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction,” Earth Planet. Sci. Lett. 265, 559–570 (2008).

    Article  Google Scholar 

  13. J. R. Blueford, “Distribution of Quaternary Radiolaria in the Navarin Basin geologic province, Bering Sea,” Deep-Sea Res. 30, 763–781 (1983).

    Article  Google Scholar 

  14. D. Boltovskoy, S. A. Kling, K. Takahashi, and K. R. Bjørklund, “World atlas of distribution of recent polycystina (Radiolaria),” Palaeontol. Electron., Article No. 13.3.18A, (2010).

    Google Scholar 

  15. W. S. Broecker, “Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance?” Science 278, 1582–1588 (1997).

    Article  Google Scholar 

  16. M. E. Conkright, R. A. Locarnini, H. E. Garcia, et al., World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures, National Oceanographic Data Center (Silver Spring, MD, 2002).

    Google Scholar 

  17. S. A. Gorbarenko, D. Nürnberg, A. N. Derkachev, et al., “Magnetostratigraphy and tephrochronology of the Upper Quaternary sediments in the Okhotsk Sea: implication of terrigenous, volcanogenic and biogenic matter supply,” Mar. Geol. 183, 107–129 (2002).

    Article  Google Scholar 

  18. S. A. Gorbarenko, I. A. Basov, M. P. Chekhovskaya, and J. Southon, “Orbital and millennium scale environmental changes in the southern Bering Sea during last Glacial-Holocene: geochemical and paleontological evidences,” Deep-Sea Res., Part II 52, 2174–2185 (2005).

    Article  Google Scholar 

  19. S. A. Gorbarenko, O. Yu. Psheneva, A. V. Artemova, et al., “Paleoenvironment changes in the NW Okhotsk Sea for the last 18 kyr determined with micropaleontological, geochemical, and lithological data,” Deep-Sea Res., Part I 57, 797–811 (2010).

    Article  Google Scholar 

  20. J. D. Hays and J. J. Morley, “The Sea of Okhotsk: a window on the ice age ocean,” Deep-Sea Res., Part I 50, 1481–1506 (2003).

    Article  Google Scholar 

  21. J. R. Hein, A. S. Bychkov, and A. E. Gibbs, Data and Results from R.V. Aleksandr Vinogradov Cruises 91-av-19/1, North Pacific Hydrochemistry Transect; 91-av-19/2, North Equatorial Pacific Karin Ridge Fe-Mn Crust Studies; and 91-av-19/4, Northwest Pacific and Bering Sea Sediment Geochemistry and Paleoceanographic Studies. U.S. Geological Survey, Open File Report 94-230 (U.S. Department of the Interior, 1994).

    Google Scholar 

  22. T. Itaki, “Depth-related radiolarian assemblage in the water-column and surface sediments of the Japan Sea,” Mar. Micropaleontol. 47, 253–270 (2003).

    Article  Google Scholar 

  23. T. Itaki, M. Uchida, S. Kim, et al., “Late Pleistocene stratigraphy and palaeoceanographic implications in northern Bering Sea slope sediments: evidence from the radiolarian species Cycladophora davisiana,” J. Quat. Sci. 24, 856–865 (2009).

    Article  Google Scholar 

  24. S. Jaccard, G. H. Haug, D. M. Sigman, et al., “Glacial/interglacial changes in Subarctic North Pacific stratification,” Science 308, 1003–1006 (2005).

    Article  Google Scholar 

  25. T. M. Hill, J. P. Kennett, D. K. Pak, et al., “Pre-bølling warming in Santa Barbara Basin, California: surface and intermediate water records of early deglacial warmth,” Quat. Sci. Rev. 25, 2835–2845 (2006).

    Article  Google Scholar 

  26. L. D. Keigwin, “Glacial-age hydrography of the far northwest Pacific Ocean,” Paleoceanography 13, 323–339 (1998).

    Article  Google Scholar 

  27. L. D. Keigwin, G. Jones, and P. Froelich, “A 15.000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific,” Earth Planet. Sci. Lett. 111, 425–440 (1992).

    Article  Google Scholar 

  28. S.-J. Kim and Y.-G. Park, “Glacial ocean circulation and property changes in the North Pacific,” Atmos.-Ocean. 46, 257–275 (2008).

    Article  Google Scholar 

  29. K. Kitani, “An oceanographic study of the Okhotsk Sea: particularly in regard to cold waters,” Bull. Far Sea Fish. Res. Lab. 9, 45–77 (1973).

    Google Scholar 

  30. S. B. Kruglikova, “Distribution of polycystine radiolarians from recent and Pleistocene sediments of the Arctic-Boreal zone,” Ber. Polarforschung. 306, 120–131 (1999).

    Google Scholar 

  31. H. Y. Ling, “Polycystine Radiolaria and Silicoflagellates from surface sediments of the Sea of Okhotsk,” Bull. Geol. Surv. Taiwan 24, 1–11 (1974).

    Google Scholar 

  32. A. Matul, A. Abelmann, T. Khusid, et al., “Late Quaternary changes of the oxygen conditions in the bottom and intermediate waters on the western Kamchatka continental slope, the Sea of Okhotsk,” Deep-Sea Res., Part II, 2013. http://dx.doi.org/10.1016/j.dsr2.2013.03.023i

    Google Scholar 

  33. D. G. Martinson, N. G. Pisias, and J. D. Hays, “Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy,” Quat. Res. 27, 1–30 (1987).

    Article  Google Scholar 

  34. L. Max, J.-R. Riethdorf, R. Tiedemann, et al., “Sea surface temperature variability and sea-ice extent in the sub-arctic Northwest Pacific during the past 15.000 years,” Paleoceanography 27, PA3213 (2012). doi: 10.1029/2012PA002292.

    Article  Google Scholar 

  35. J. J. Morley and J. D. Hays, “Oceanographic conditions associated with high abundances of the radiolarian Cycladophora davisiana,” Earth Planet. Sci. Lett. 66, 63–72 (1983).

    Article  Google Scholar 

  36. J. J. Morley and L. E. Heusser, “Late Quaternary atmospheric and oceanographic variations in the western Pacific inferred from pollen and radiolarian analyses,” Quat. Science Rev. 8, 263–276 (1989).

    Article  Google Scholar 

  37. J. J. Morley and L. E. Heusser, “Role of orbital forcing in East Asian monsoon climates during the last 350 kyr: evidence from terrestrial and marine climate proxies from core RC14-99,” Paleoceanography 12, 483–493 (1997).

    Article  Google Scholar 

  38. J. J. Morley and S. W. Robinson, “Improved method for correlating late Pleistocene/Holocene records from the Bering Sea: application of a biosiliceous/geochemical stratigraphy,” Deep-Sea Res. 33, 1203–1211 (1986).

    Article  Google Scholar 

  39. J. J. Morley, J. D. Hays, and J. H. Robertson, “Strati-graphic framework for the late Pleistocene in the north-west Pacific Ocean,” Deep-Sea Res. 29, 1485–1499 (1982).

    Article  Google Scholar 

  40. J. J. Morley, V. L. Tiase, M. M. Ashby, and M. Kashgarian, “A high-resolution stratigraphy for Pleistocene sediments from North Pacific sites 881, 883, and 887 based on abundance variations of the radiolarian Cycladophora davisiana,” Proc. Ocean Drill. Program: Sci. Results 145, 133–140 (1995).

    Google Scholar 

  41. A. Nimmergut and A. Abelmann, “Spatial and seasonal changes of radiolarian standing stocks in the Sea of Okhotsk,” Deep-Sea Res., Part I 49, 463–493 (2002).

    Article  Google Scholar 

  42. D. Nürnberg and R. Tiedemann, “Environmental change in the Sea of Okhotsk during the last 1.1 million years,” Paleoceanography 19, PA4011 (2004). doi: 10.1029/2004PA001023.

    Article  Google Scholar 

  43. D. Nürnberg, D. Dethleff, R. Tiedemann, et al., “Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350 ka — evidence from ice-rafted debris and planktonic δ18O,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 310, 191–205 (2011).

    Article  Google Scholar 

  44. K. Ohkushi, T. Itaki, and N. Nemoto, “Last glacial-Holocene change in intermediate water ventilation in the northwestern Pacific,” Quat. Sci. Rev. 22, 1477–1484 (2003).

    Article  Google Scholar 

  45. Y. Okazaki, K. Takahashi, T. Itaki, and Y. Kawasaki, “Comparison of radiolarian vertical distributions in the Okhotsk Sea near the Kuril Islands and in the north-western North Pacific off Hokkaido Island,” Mar. Micropaleontol. 51, 257–284 (2004).

    Article  Google Scholar 

  46. Y. Okazaki, K. Takahashi, K. Katsuki, et al., “Late Quaternary paleoceanographic changes in the south-western Okhotsk Sea: evidence from geochemical, radiolarian, and diatom records,” Deep-Sea Res., Part II 52, 2332–2350 (2005).

    Article  Google Scholar 

  47. B. L. Otto-Bliesner, E. C. Brady, R. Tomas, et al., “Last Glacial maximum and Holocene climate in CCSM3,” J. Clim. 19, 2526–2544 (2006).

    Article  Google Scholar 

  48. U. Pflaumann, M. Sarnthein, M. Chapman, et al., “Glacial North Atlantic: sea-surface conditions recon-structed by GLAMAP 2000,” Paleoceanography 18, PA1065 (2003). doi: 10.1029/2002PA000774.

    Article  Google Scholar 

  49. S. F. Rella, R. Tada, K. Nagashima, et al., “Abrupt changes of intermediate water properties on the north-eastern slope of the Bering Sea during the last glacial and deglacial period,” Paleoceanography 27, PA3203 (2012). doi: 10.1029/2011PA002205.

    Article  Google Scholar 

  50. J. H. Robertson, Ph.D. Thesis (Columbia University, New York, 1975).

  51. H. M. Sachs, “North Pacific radiolarian assemblages and their relationship to oceanographic parameters,” Quat. Res. 3, 73–88 (1973).

    Article  Google Scholar 

  52. C. Sancetta, “Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea,” Deep-Sea Res. 30, 851–869 (1983).

    Article  Google Scholar 

  53. T. Senjyu and H. Sudo, “The upper portion of the Japan Sea proper water: its source and circulation as deduced from isopycnal analysis,” J. Oceanogr. 50, 663–690 (1994).

    Article  Google Scholar 

  54. J. H. Swift and K. Aagaard, “Seasonal transitions and water mass formation in the Iceland and Greenland seas,” Deep-Sea Res. 28A, 1107–1129 (1981).

    Article  Google Scholar 

  55. L. D. Talley, “An Okhotsk Sea water anomaly: implications for ventilation in the North Pacific,” Deep-Sea Res. 38,Suppl. 1, 171–190 (1991).

    Article  Google Scholar 

  56. L. D. Talley, “Distribution and formation of North Pacific intermediate water,” J. Phys. Oceanogr. 23, 517–537 (1993).

    Article  Google Scholar 

  57. S. Tanaka and K. Takahashi, “Late Quaternary pale-oceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages,” Deep-Sea Res., Part II 52, 2131–2149 (2005).

    Article  Google Scholar 

  58. J. Yang and S. Honjo, “Modeling the near-freezing dichothermal layer in the Sea of Okhotsk and its inter-annual variations,” J. Geophys. Res., C: Oceans Atmos. 101(7), 16421–16433 (1996).

    Article  Google Scholar 

  59. I. Yasuda, “The origin of the North Pacific Intermediate Water,” J. Geophys. Res., C: Oceans Atmos. 102(1), 893–909 (1997).

    Article  Google Scholar 

  60. M. Uda, “Oceanography of the subarctic Pacific Ocean,” J. Fish. Res. Board Can. 20, 119–179 (1963).

    Article  Google Scholar 

  61. H. Ueno and I. Yasuda, “Intermediate water circulation in the North Pacific subarctic and northern subtropical regions,” J. Geophys. Res., C: Oceans Atmos. 108(1), PA3348 (2003). doi: 10.1029/2002JC001372.

    Article  Google Scholar 

  62. I. Wainer, M. Goes, L. N. Murphy, and E. Brady, “Changes in the intermediate water mass formation rates in the global ocean for the Last Glacial maximum, mid-Holocene and pre-industrial climates,” Paleoceanography 27, PA3101 (2012). doi: 10.1029/2012PA002290.

    Article  Google Scholar 

  63. R. Wang and R. Chen, “Cycladophora davisiana (Radiolarian) in the Bering Sea during the late Quaternary: a stratigraphic tool and proxy of the glacial subarctic Pacific intermediate water,” Sci. Chin., D 48(10), 1698–1707 (2005).

    Article  Google Scholar 

  64. R. Wang, W. Xiao, Q. Qianyu Li, and R. Chen, “Polycystine radiolarians in surface sediments from the Bering Sea Green Belt area and their ecological implication for paleoenvironmental reconstructions,” Mar. Micropaleontol. 59, 135–152 (2006).

    Article  Google Scholar 

  65. B. A. Warren, “Why is no deep water formed in the North Pacific?” J. Mar. Res. 41, 327–347 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Matul.

Additional information

Original Russian Text © A.G. Matul, A. Abelmann, R. Gersonde, D. Nürnberg, R. Tiedemann, S.B. Kruglikova, 2015, published in Okeanologiya, 2015, Vol. 55, No. 1, pp. 103–112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matul, A.G., Abelmann, A., Gersonde, R. et al. Late quaternary distribution of the Cycladophora davisiana radiolarian species: Reflection of possible ventilation of the North Pacific intermediate water during the Last Glacial Maximum. Oceanology 55, 91–99 (2015). https://doi.org/10.1134/S0001437015010130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437015010130

Keywords

Navigation