Skip to main content
Log in

Mesoscale eddies in the Black Sea from satellite altimetry data

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

The mesoscale eddy dynamics in the Black Sea is investigated using the method of automated eddy identification based on the determination of closed streamlines in the altimetry-derived velocity fields. In total, more than 800 eddies of different signs with a lifetime of more than four weeks and more than 40 kilometers in diameter were identified over the period from 1992 to 2011. Using the obtained array of data, this paper investigates the quantity, life span, geometrical and kinematic characteristic of eddies, characteristic trajectories and velocities of their movement; specifies areas of their primary formation and collapse; and analyzes evolution of different characteristics of the eddies depending on the time of their existence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Ginzburg, A. G. Zatsepin, V. V. Kremenetskii, et al., “Mesoscale dynamics of the Black Sea waters,” in Oceanology in the Beginning of XXI Century (Nauka, Moscow, 2008), pp. 11–42.

    Google Scholar 

  2. A. I. Ginzburg, A. G. Kostyanoi, N. P. Nezlin, et al., “Anticyclonic eddies above northwestern continental slope of the Black Sea and their role in the transfer of chlorophyll-enriched self waters to abyssal basin,” Issled. Zemli Kosmosa, No. 3, 71–81 (2000).

    Google Scholar 

  3. Yu. N. Golubev and V. S. Tuzhilkin, “Kinematics and structure of waters of anticyclonic eddy formation in the central part of the Black Sea,” Okeanologiya (Moscow), 30(4), 575–581 (1990).

    Google Scholar 

  4. A. G. Zatsepin, A. I. Ginzburg, M. A. Evdoshenko, et al., “Vortex structures and horizontal water exchange in the Black Sea,” in Complex Studies of the Northeastern Black Sea, Ed. by A. G. Zatsepin and M. V. Flint (Nauka, Moscow, 2002), pp. 55–81.

    Google Scholar 

  5. S. S. Karimova, “Research of mobile eddy structures of the Black Sea using infrared and optic images,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 8(4), 228–244 (2011).

    Google Scholar 

  6. V. G. Krivosheya, V. B. Titov, I. M. Ovchinnikov, et al., “Influence of circulation of waters and eddy formation on abyssal position of upper frontier of hydrosulfuric zone of the Black Sea,” Okeanologiya (Moscow) 40(6), 816–825 (2000).

    Google Scholar 

  7. V. S. Latun, “Anticyclonic eddies in the Black Sea in summer of 1984,” Morsk. Gidrofiz. Zh., No. 3, 27–35 (1989).

    Google Scholar 

  8. V. S. Latun, “Influence of anticyclonic eddies on water exchange between the northwestern shoals and abyssal part of the Black Sea,” in Complex Environmental Studies in the Black Sea (Marine Hydrophysical Institute, Ukrainian National Academy of Sciences, Sevastopol, 1995), pp. 37–47.

    Google Scholar 

  9. M. D. Blokhina and Y. D. Afanasyev, “Baroclinic instability and transient features of mesoscale surface circulation in the Black Sea: laboratory experiment,” J. Geophys. Res., C: Oceans Atmos. 108(10), 3322 (2003).

    Article  Google Scholar 

  10. A. Chaigneau, A. Gizolme, and C. Grados, “Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns,” Progr. Oceanogr. 79(2–4), 106–119 (2008).

    Article  Google Scholar 

  11. D. B. Chelton, M. G. Schlax, and R. M. Samelson, “Global observations of nonlinear mesoscale eddies,” Progr. Oceanogr. 91(2), 167–216 (2011).

    Article  Google Scholar 

  12. G. Chen, Y. Hou, and X. Chu, “Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure,” J. Geophys. Res., C: Oceans Atmos. 116, 06018 (2011).

    Article  Google Scholar 

  13. G. C. D’Hieres, P. A. Davies, and H. Didelle, Laboratory Studies of Pseudo — Periodic Forcing Due to Vortex Shedding from an Isolated Solid Obstacle in a Homogeneous Rotating Fluid, in Elsevier Oceanography Series, Ed. by J. C. J. Nihoul and B. M. Jamart (Elsevier, 1989), No. 50, pp. 639–653.

    Google Scholar 

  14. L.-L. Fu, “Satellite altimetry and Earth sciences,” in A Handbook of Techniques and Applications, in International Geophysics Series (Academic, New York, 2001), Vol. 69.

    Google Scholar 

  15. A. I. Ginzburg, A. G. Kostianoy, V. G. Krivosheya, et al., “Mesoscale eddies and related processes in the northeastern Black Sea,” J. Mar. Syst., No. 32, 71–90 (2002).

    Google Scholar 

  16. A. I. Ginzburg, A. G. Kostianoy, V. G. Krivosheya, et al., “Anticyclonic eddies in the northwestern Black Sea,” J. Mar. Syst., No. 32, 91–106 (2002).

    Google Scholar 

  17. J. Isern-Fontanet, E. García-Ladona, and J. Font, “Identification of marine eddies from altimetry maps,” J. Atmos. Ocean. Technol. 20(5), 772–778 (2003).

    Article  Google Scholar 

  18. G. Korotaev, T. Oguz, A. Nikiforov, et al., “Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data,” J. Geophys. Res., C: Oceans Atmos. 108(4), 3122 (2003).

    Article  Google Scholar 

  19. P.-Y. Le Traon, G. Dibarboure, and N. Ducet, “Use of a high-resolution model to analyze the mapping capabilities of multiple-altimeter missions,” J. Atmos. Oceanic Technol. 18(5), 1277–1288 (2001).

    Article  Google Scholar 

  20. M. V. Nezlin and G. G. Sutyrin, Long-Lived Solitary Anticyclones in the Planetary Atmospheres and Oceans, in Laboratory Experiments and in Theory, in Elsevier Oceanography Series, Ed. by J. C. J. Nihoul and B. M. Jamart (Elsevier, 1989), No. 50, pp. 701–719.

    Google Scholar 

  21. T. Oguz, V. S. Latun, M. A. Latif, et al., “Circulation in the surface and intermediate layers of the Black Sea,” Deep-Sea Res. 40(8), 1597–1612 (1993).

    Article  Google Scholar 

  22. A. Okubo, “Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences,” Deep-Sea Res. 17(3), 445–454 (1970).

    Google Scholar 

  23. A. Pascual, Y. Faugère, G. Larnicol, et al. “Improved description of the ocean mesoscale variability by combining four satellite altimeters,” Geophys. Res. Lett. 33(2), 202611 (2006).

    Google Scholar 

  24. A. Sadarjoen and F. H. Post, “Detection, quantification, and tracking of vortices using streamline geometry,” Visualization Comput. Graph. 24(3), 333–341 (2000).

    Article  Google Scholar 

  25. G. I. Shapiro, S. V. Stanichny, and R. R. Stanychna, “Anatomy of shelf-deep sea exchanges by a mesoscale eddy in the North West Black Sea as derived from remotely sensed data,” Remote Sens. Environ., no. 114, 867–875 (2010).

    Google Scholar 

  26. J. M. A. C. Souza, C. de Boyer Montégut, and P. Y. Le Traon, “Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean,” Ocean Sci. 7, 317–334 (2011).

    Article  Google Scholar 

  27. J. V. Staneva, D. E. Dietrich, E. V. Stanev, et al., “Rim Current and coastal eddy mechanisms in an eddy-resolving Black Sea general circulation model,” J. Mar. Syst. 31(1), 137–157 (2001).

    Article  Google Scholar 

  28. H. I. Sur and Y. P. Ilyin, “Evolution of satellite derived mesoscale thermal patterns in the Black Sea,” Progr. Oceanogr. 39(2), 109–151 (1997).

    Article  Google Scholar 

  29. J. Weiss, “The dynamics of enstrophy transfer in two-dimensional hydrodynamics,” Physica 48(2), 273–294 (1992).

    Google Scholar 

  30. A. G. Zatsepin, A. I. Ginzburg, A. G. Kostianoy, et al., “Observation of Black Sea mesoscale eddies and associated horizontal mixing,” J. Geophys. Res., C: Oceans Atmos. 108, 1–27 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kubryakov.

Additional information

Original Russian Text © A.A. Kubryakov, S.V. Stanichny, 2015, published in Okeanologiya, 2015, Vol. 55, No. 1, pp. 65–77.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubryakov, A.A., Stanichny, S.V. Mesoscale eddies in the Black Sea from satellite altimetry data. Oceanology 55, 56–67 (2015). https://doi.org/10.1134/S0001437015010105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437015010105

Keywords

Navigation