Skip to main content
Log in

The spatial variability of the baroclinic tidal energy dissipation and the associated diapycnal diffusion in the Barents Sea

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

The results of modeling with the use of the QUODDY-4 three-dimensional finite-element hydrostatic model are given. They indicate that the averaged (over a tidal cycle) depth-integrated dissipation of the baroclinic tidal energy is the maximum in the southern parts of the sea and the minimum westward of Novaya Zemlya. It remains intact until the 40° E meridian, thus dividing the sea into the western and eastern parts. Westward of the meridian, the dissipation grows again. The field of the depth-averaged diapycnal diffusivity calculated by the Osborn formula resembles in many details the spatial distribution of the depth-integrated dissipation. Its maximum values fall on the Spitsbergen Bank and the entrance to the White and Pechora Seas; the minimum values determined by molecular kinematic diffusivity are grouped together in the northeast part of the sea as discrete spots. By comparing the found values of the diapycnal diffusivity with typical estimates of the background vertical eddy diffusivity, we ascertain that either they coincide among themselves by order of magnitude or the former values are more than the latter ones. This implies that the contribution of tides to the formation of the Barents Sea climate may be significant and even prevailing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Kagan and A. A. Timofeev, “Dynamics and energetics of surface and internal semidiurnal tides in the White Sea,” Izv., Atmos. Ocean. Phys. 41(4), 498–512 (2005).

    Google Scholar 

  2. J. T. C. Ip and D. R. Lynch, QUODDY-3 User’s Manual: Comprehensive Coastal Circulation Simulation Using Finite Elements. Nonlinear Prognostic Time-Stepping Model (Thayler School of Engineering, Dartmouth College, Hanover, 1995).

    Google Scholar 

  3. S. R. Jayne, “The impact of abyssal mixing parameterizations in an ocean general model,” J. Phys. Oceanogr. 39(7), 1756–1775 (2009).

    Article  Google Scholar 

  4. S. R. Jayne and L. C. St. Laurent, “Parameterizing tidal dissipation over rough topography,” Geophys. Res. Lett. 28(5), 811–814 (2001).

    Article  Google Scholar 

  5. Joint US-Russian Atlas of the Arctic Ocean, Oceanography Atlas for the Summer Period, Ed. by E. Tanis and L. Timokhov (Environmental Working Group, University of Colorado, Media Digital, 1998).

    Google Scholar 

  6. J. R. Ledwell, A. J. Watson, and C. S. Law, “Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment,” Nature 364(6439), 701–703 (1993).

    Article  Google Scholar 

  7. J. R. Ledwell, A. J. Watson, and C. S. Law, “Mixing of a tracer in the pycnocline,” J. Geophys. Res., C: Oceans Atmos. 103(10), 21499–21529 (1998).

    Article  Google Scholar 

  8. R. G. Lueck and T. D. Mudge, “Topographically induced mixing around a shallow seamount,” Science 276(5320), 1831–1833 (1997).

    Article  Google Scholar 

  9. D. R. Lynch, “Three-dimensional diagnostic model for baroclinic, wind-driven and tidal circulation in shallow seas,” in FUNDY 4 User’s Manual: Numerical Methods Laboratory Report No. NML-92-2 (Dartmouth College, Hanover, USA, 1990).

    Google Scholar 

  10. D. R. Lynch and W. G. Gray, “A wave equation model for finite element tidal computations,” Comput. Fluids 7(3), 207–228 (1979).

    Article  Google Scholar 

  11. D. R. Lynch and F. E. Werner, “Three-dimensional hydrodynamics on finite elements. Part I: Linearized harmonic model,” Int. J. Num. Methods Fluids 7(9), 871–909 (1987).

    Article  Google Scholar 

  12. D. R. Lynch and F. E. Werner, “Three-dimensional hydrodynamics on finite elements. Part II: Nonlinear time-stepping model,” Int. J. Num. Methods Fluids 12(6), 507–533 (1991).

    Article  Google Scholar 

  13. D. R. Lynch, F. E. Werner, D. A. Greenberg, and J. W. Loder, “Diagnostic model for baroclinic and wind-driven circulation in shallow seas,” Cont. Shelf Res. 12(1), 37–64 (1992).

    Article  Google Scholar 

  14. W. H. Munk, “Abyssal recipes,” Deep-Sea Res. 13(13), 707–730 (1966).

    Google Scholar 

  15. W. H. Munk and C. Wunsch, “Abyssal recipes II: energetics of tidal and wind mixing,” Deep-Sea Res., Part I 45(12), 1997–2010 (1998).

    Article  Google Scholar 

  16. N. S. Oakey, “Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements,” J. Phys. Oceanogr. 12(3), 256–271 (1982).

    Article  Google Scholar 

  17. T. R. Osborn, “Estimates of the local rate of vertical diffusion from dissipation measurements,” J. Phys. Oceanogr. 10(1), 83–89 (1980).

    Article  Google Scholar 

  18. L. Padman and S. Erofeeva, “A barotropic inverse tidal model for the Arctic Ocean,” Geophys. Res. Lett. 31(2), (2004). doi: 10.1029/2003GL019003.

    Google Scholar 

  19. H. Peters and R. Bokhorst, “Microstructure observations of turbulent mixing in a partially mixed estuary. Part II: salt flux and stress,” J. Phys. Oceanogr. 31(4), 1105–1119 (2001).

    Article  Google Scholar 

  20. K. L. Polzin, J. M. Toole, J. R. Ledwell, and R. W. Schmitt, “Spatial variability turbulent mixing in the abyssal ocean,” Science 276(5309), 93–97 (1997).

    Article  Google Scholar 

  21. O. A. Saenko, “The effect of localized mixing on the ocean circulation and time-dependent climate change,” J. Phys. Oceanogr. 36(2), 140–160 (2006).

    Article  Google Scholar 

  22. O. A. Saenko and W. J. Merryfield, “On the effect of topographically enhanced mixing on the global ocean circulation,” J. Phys. Oceanogr. 35(5), 826–834 (2005).

    Article  Google Scholar 

  23. L. H. Shih, J. R. Koseff, G. N. Ivey, and J. H. Ferziger, “Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations,” J. Fluid Mech. 525, 193–214 (2005). doi: 10.1017/S0022112004002587.

    Article  Google Scholar 

  24. H. L. Simmons, S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, “Tidally driven mixing in a numerical model of the ocean general circulation,” Ocean Model. 6(3–4), 245–263 (2004).

    Article  Google Scholar 

  25. J. Smagorinsky, “General circulation experiments with the primitive equations,” Month. Weather Rev. 91(3), 99–164 (1963).

    Article  Google Scholar 

  26. L. C. St. Laurent, J. M. Toole, and R. W. Schmitt, “Buoyancy forcing by turbulence above rough topography in the abyssal Brazil Basin,” J. Phys. Oceanogr. 31(12), 3476–3495 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Kagan.

Additional information

Original Russian Text © B.A. Kagan, E.V. Sofina, 2015, published in Okeanologiya, 2015, Vol. 55, No. 1, pp. 26–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagan, B.A., Sofina, E.V. The spatial variability of the baroclinic tidal energy dissipation and the associated diapycnal diffusion in the Barents Sea. Oceanology 55, 20–24 (2015). https://doi.org/10.1134/S0001437015010075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437015010075

Keywords

Navigation