Skip to main content
Log in

Lagrangian methods for observation of intrathermocline eddies in ocean

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

Intrathermocline anticyclonic eddies (lenses) of Mediterranean origin are regularly observed in the Eastern part of the Atlantic Ocean. These eddies are identified both from satellites as altimetry and seasurface temperature (SST) changes and according to data of neutral buoyancy floats (NBF) placed in the body of a lens. In this paper, in the framework of a three-layer quasi-geostrophic model, using the contour dynamics method, we consider some theoretical aspects of lens movement observations made by acoustic NBF and freely drifting buoys of the Argo project. Direct experimental observation data on the lenses’ drift in the North Atlantic qualitatively confirmed the results of our numerical experiments. In particular, it is shown that the spin of the lens has an advective influence on the behavior of NBF at distances of several lens radii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Demidov, B. N. Filyushkin, and N. G. Kozhelupova, “Detection of Mediterranean lenses in the Atlantic Ocean by profilers of the Argo project,” Oceanology (Engl. Transl.) 52(2), 171–180 (2012).

    Google Scholar 

  2. M. A. Sokolovskiy, “Modeling of three-layer vortex movements in the ocean by contour dynamics method,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 27(5), 550–562 (1991).

    Google Scholar 

  3. B. N. Filyushkin, M. A. Sokolovskiy, N. G. Kozhelupova, and I. M. Vagina, “Dynamics of intrathermocline lenses,” Dokl. Earth Sci. 434(2), 1377–1380 (2010).

    Article  Google Scholar 

  4. B. N. Filyushkin, M. A. Sokolovskiy, N. G. Kozhelupova, and I. M. Vagina, “Reflection of intrathermocline eddies on the ocean surface,” Dokl. Earth Sci. 439(1), 986–989 (2011).

    Article  Google Scholar 

  5. B. N. Filyushkin, M. A. Sokolovskiy, N. G. Kozhelupova, and I. M. Vagina, “Evolution of intrathermocline eddies moving over a submarine hill,” Dokl. Earth Sci. 441(2), 1757–1760 (2011).

    Article  Google Scholar 

  6. L. Armi, D. Hebert, N. Oakey, et al., “Two years in the life of a Mediterranean salt lens,” J. Phys. Oceanogr. 19(3), 354–370 (1989).

    Article  Google Scholar 

  7. I. Bashmachnikov and X. Carton, “Surface signature of Mediterranean water eddies in the Northeastern Atlantic: effect of the upper ocean stratification,” Ocean Sci. 8, 931–943 (2012).

    Article  Google Scholar 

  8. X. Carton, N. Daniault, J. Alves, et al., “Meddy dynamics and interaction with neighboring eddies southwest of Portugal: observations and modeling,” J. Geophys. Res., C: Oceans Atmos. 115, 06017 (2010). doi: 10.1029/2009JC005646.

    Article  Google Scholar 

  9. B. N. Filyushkin and M. A. Sokolovskiy, “Modeling the evolution of intrathermocline lenses in the Atlantic Ocean,” J. Mar. Res. 69(2–3), 191–220 (2011).

    Article  Google Scholar 

  10. K. V. Koshel, E. A. Ryzhov, and V. V. Zhmur, “Diffusion-affected passive scalar transport in an ellipsoidal vortex in a shear flow,” Nonlin. Processes Geophys. 20(4), 437–444 (2013).

    Article  Google Scholar 

  11. P. L. Richardson, A. S. Bower, and W. Zenk, “Summary of meddies tracked by floats,” Int. WOCE Newslett. 34, 18–20 (1999).

    Google Scholar 

  12. P. L. Richardson, D. Walsh, L. Armi, et al., “Tracking three meddies with SOFAR floats,” J. Phys. Oceanogr. 19(3), 371–383 (1989).

    Article  Google Scholar 

  13. P. L. Richardson and C.M. Wooding, “RAFOS float trajectories in meddies during the Semaphore Experiment, 1993–1995,” in Woods Hole Oceanographic Institute, WHOI-99-05, Technical Report, 1999.

    Google Scholar 

  14. M. A. Sokolovskiy, B. N. Filyushkin, and X. J. Carton, “Dynamics of intrathermocline vortices in a gyre flow over a seamount chain,” Ocean Dyn. 63(7), 741–760 (2013).

    Article  Google Scholar 

  15. D. Stammer, H.-H. Hinrichsen, and R. H. Käse, “Can meddies be detected by satellite altimetry?” J. Geophys. Res., C: Oceans Atmos. 96(4), 7005–7014 (1991).

    Article  Google Scholar 

  16. V. V. Zhmur, E. A. Ryzhov, and K. V. Koshel, “Ellipsoidal vortex in a nonuniform flow. Dynamics and chaotic advections,” J. Mar. Res. 69(2–3), 435–461 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Filyushkin.

Additional information

Original Russian Text © B.N. Filyushkin, M.A. Sokolovskiy, N.G. Kozhelupova, I.M. Vagina, 2014, published in Okeanologiya, 2014, Vol. 54, No. 6, pp. 737–743.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filyushkin, B.N., Sokolovskiy, M.A., Kozhelupova, N.G. et al. Lagrangian methods for observation of intrathermocline eddies in ocean. Oceanology 54, 688–694 (2014). https://doi.org/10.1134/S0001437014050051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437014050051

Keywords

Navigation