, Volume 54, Issue 4, pp 505–518 | Cite as

Sea-surface bioproductivity changes in the Northwest Pacific over the last 25 kyr

  • E. A. OvsepyanEmail author
  • E. V. Ivanova
  • L. O. Murdmaa
  • G. N. Alekhina
Marine Geology


The sea-surface bioproductivity changes over the last 25 kyr were inferred from published data on 30 sediment cores from the open Northwest Pacific (NWP), Sea of Okhotsk, Bering Sea and Sea of Japan accounting for the glacioeustatic sea-level changes. A novel method was developed to compare the variations of several independent productivity proxies relative to the present-day values. During the Last Glacial Maximum, the bioproductivity in the Sea of Okhotsk and the western Bering Sea (BS) was lower than at present, whereas the southern and southeastern Bering Sea and the open NWP are characterized by enhanced bioproductivity. During the early deglacial stage, an increase in bioproductivity was estimated only for the southeastern Bering Sea. High and fairly high bioproductivity was estimated for Heinrich 1 in the open NWP, above the Umnak Plateau and on the Shirshov and Bowers Ridges in the Bering Sea. The high productivity in the Bering Sea, Sea of Okhotsk and NWP during the Bølling/Allerød was caused by the global warming and enhanced nutrient supply by meltwater from the continent. During the Early Holocene, high productivity was estimated for almost the entire NWP. The Late Holocene sea-surface bioproductivity was generally lower than that of the Early Holocene. Proposed factors that have controlled the sea-surface bioproductivity during the last 25 kyr include: the location of the sea ice margin, the river runoff, gradual flooding of the Bering Sea and the Sea of Okhotsk shelf areas, the water mass exchange between the marginal seas and the open NWP, the eolian supply and the deep vertical mixing of the water column.


Total Organic Carbon Tsushima Basin Euphotic Layer Deryugin Basin Shirshov Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Barash, M. P. Chekhovskaya, N. Bibo, et al., “Quaternary paleooceanology of southeastern part of the Sea of Okhotsk determined according to lithology and plankton foraminifers,” Okeanologiya (Moscow) 45(2), 273–285 (2005).Google Scholar
  2. 2.
    M. S. Barash, T. A. Khusid, A. G. Matul, et al., “Distribution of benthic foraminifera in Upper Quaternary sediments of the Deryugin Basin (Sea of Okhotsk),” Oceanology (Engl. Transl.) 48(1), 105–113 (2008).CrossRefGoogle Scholar
  3. 3.
    P. L. Bezrukov and E. A. Romankevich, “Stratigraphy and lithology of bottom deposits in the northwestern Pacific,” Dokl. Akad. Nauk SSSR, 130(2), 417–420 (1960).Google Scholar
  4. 4.
    Biological Encyclopedic Dictionary, Ed. by M. T. Gilyarov (Sov. Entsikl., Moscow, 1989) [in Russian].Google Scholar
  5. 5.
    N. V. Bubenshchikova, D. Nürnberg, S. A. Gorbarenko, and L. Lembke-Jene, “Variations of the oxygen minimum zone of the Okhotsk Sea during the last 50 ka as indicated by benthic foraminiferal and biogeochemical data,” Oceanology (Engl. Transl.) 50(1), 99–113 (2010).Google Scholar
  6. 6.
    M. E. Vinogradov, “Biology of the ocean,” in Oceanology in the Beginning of XXI Century, Ed. by A. L. Vereshchaki (Nauka, Moscow, 2008), pp. 257–292.Google Scholar
  7. 7.
    A. P. Jousé, Stratigraphic and Paleogeographic Studies in the Northwestern Pacific (Akad. Nauk SSSR, Moscow, 1962) [in Russian].Google Scholar
  8. 8.
    E. V. Ivanova, I. I. Burmistrova, S. A. Gorbarenko, et al., “New data on Pleistocene evolution of the Yamato Rise, Sea of Okhotsk,” Okeanologiya (Moscow) 32(2), 337–346 (1992).Google Scholar
  9. 9.
    L. D. Landau and E. M. Lifshits, Hydrodynamics (Nauka, Moscow, 1986) [in Russian].Google Scholar
  10. 10.
    E. A. Ovsepyan, E. V. Ivanova, L. Max, et al., “Late Quaternary oceanographic conditions in the Western Bering Sea,” Oceanology (Engl. Transl.) 53(2), 211–222 (2013).CrossRefGoogle Scholar
  11. 11.
    E. A. Romankevich and A. A. Vetrov, Carbon Cycle in Arctic Seas of Russia (Nauka, Moscow, 2001) [in Russian].Google Scholar
  12. 12.
    T. A. Khusid, M. P. Chekhovskaya, I. A. Basov, and S. A. Gorbarenko, “Benthic foraminifers in upper Quaternary sediments of the southern Bering Sea: distribution and paleoceanographic interpretations,” Stratigr. Geol. Correl. 14(5), 538–548 (2006).CrossRefGoogle Scholar
  13. 13.
    T. A. Khusid, N. V. Belyaeva, M. P. Chekhovskaya, and A. G. Matul, “Foraminifers in late Pleistocene-Holocene sediments of the Deryugin basin of the Sea of Okhotsk,” Oceanology (Engl. Transl.) 49(5), 707–717 (2009).CrossRefGoogle Scholar
  14. 14.
    A. Berger and M. F. Loutre, “Isolation values for the climate of the last 10 million years,” Quat. Sci. Rev. 10(4), 297–317 (1991).CrossRefGoogle Scholar
  15. 15.
    COHMAP Members, “Climatic changes of the last 18000 years: observations and model simulations,” Science 241, 1043–1052 (1988).CrossRefGoogle Scholar
  16. 16.
    B. G. Brunelle, D. M. Sigman, M. S. Cook, et al., Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes,” Paleoceanography 22, PA1215 (2007). doi:10.1029/2005PA001205CrossRefGoogle Scholar
  17. 17.
    B. G. Brunelle, D. M. Sigman, S. L. Jaccard, et al., “Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum,” Quat. Sci. Rev. 29, 2579–2590 (2010).CrossRefGoogle Scholar
  18. 18.
    B. E. Caissie, J. Brigham-Grette, K. T. Lawrence, et al., “Last glacial maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records,” Paleoceanography 25, PA1206 (2010). doi:10.1029/2008PA001671CrossRefGoogle Scholar
  19. 19.
    J. Crusius, T. F. Pedersen, S. Kienast, et al., “Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling/Allerød interval (14.7–12.9),” Geology 32(7), 633–636 (2004).CrossRefGoogle Scholar
  20. 20.
    H. Gebhardt, M. Sarnthein, P. M. Grootes, et al., “Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V,” Paleoceanography 23, PA4212 (2008). doi: 10.1029/2007PA001513CrossRefGoogle Scholar
  21. 21.
    S. A. Gorbarenko, “Stable isotope and lithological evidence of late-glacial and Holocene oceanography of the Northwestern Pacific and its marginal seas,” Quat. Res. 46, 230–250 (1996).CrossRefGoogle Scholar
  22. 22.
    S. A. Gorbarenko and J. R. Southon, “Detailed Japan Sea paleoceanography during the last 25 kyr: constraints from AMS dating and δ18O of planktonic foraminifera,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 156, 177–193 (2000).CrossRefGoogle Scholar
  23. 23.
    S. A. Gorbarenko, I. A. Basov, M. P. Chekhovskaya, et al., “Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene: geochemical and paleontological evidence,” Deep Sea Res., Part II 52, 2174–2185 (2005).CrossRefGoogle Scholar
  24. 24.
    S. A. Gorbarenko, P. Wang, R. Wang, and X. Cheng, “Orbital and suborbital environmental changes in the southern Bering Sea during the last 50 kyr,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 286, 97–106 (2010).CrossRefGoogle Scholar
  25. 25.
    S. H. M. Jacquet, F. Dehairs, M. Elskens, et al., “Barium cycling along WOCE SR3 line in the Southern Ocean,” Mar. Chem. 106, 33–45 (2007). doi:10.1016/j.marchem.2006.06.007CrossRefGoogle Scholar
  26. 26.
    K. Katsuki and K. Takahashi, “Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary,” Deep Sea Res., Part II 52, 2110–2130 (2005).CrossRefGoogle Scholar
  27. 27.
    S. Kim, B. K. Khim, M. Uchida, et al., “Millennialscale paleoceanographic events and implication for the intermediate-water ventilation in the northern slope area of the Bering Sea during the last 71 kyrs,” Global Planet. Change 79, 89–98 (2011).CrossRefGoogle Scholar
  28. 28.
    K. Kohfeld and Z. Chase, “Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean,” Quat. Sci. Rev. 30, 3350–3363 (2011).CrossRefGoogle Scholar
  29. 29.
    L. Max, J.-R. Riethdorf, R. Tiedemann, et al., “Sea surface temperature variability and sea-ice extend in the subarctic Northwest Pacific during the past 15.000 years,” Paleoceanography 27, PA3213 (2012). doi:10.1029/2012PA002292CrossRefGoogle Scholar
  30. 30.
    R. Maeda, H. Kawahata, and M. Nohara, “Fluctuation of biogenic and abiogenic sedimentation on the Shatsky Rise in the western North Pacific during the late Quaternary,” Mar. Geol. 189, 197–214 (2002).CrossRefGoogle Scholar
  31. 31.
    K. Minoshima, H. Kawahata, and K. Ikehara, “Changes in biological production in the mixed water region (MWR) of the northwestern North Pacific during the last 27 kyr,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 254, 430–447 (2007).CrossRefGoogle Scholar
  32. 32.
    I. Murdmaa, E. Ivanova, G. Leduc, et al., “High resolution sedimentary record from the Cocos Ridge: evidence of land-ocean linkages in the Eastern Equatorial Pacific over the last 70 ka,” Geophys. Res. Abstr. 11, EGU2009-10433–1 (2009).Google Scholar
  33. 33.
    D. Nürnberg and R. Tiedemann, “Environmental change in the Sea of Okhotsk during the last 1.1 million years,” Paleoceanography 19, PA4011 (2004). doi:10.1029/2004PA001023CrossRefGoogle Scholar
  34. 34.
    K. Ohkushi, E. Thomas, and H. Kawahata, “Abyssal benthic foraminifera from the northwestern Pacific (Shatsky Rise) during the last 298 kyr,” Mar. Micropaleontol. 38, 119–147 (2000).CrossRefGoogle Scholar
  35. 35.
    Y. Okazaki, K. Takahashi, H. Asahi, et al., “Productivity changes in the Bering Sea during the late Quaternary,” Deep Sea Res., Part II 52, 2150–2162 (2005).CrossRefGoogle Scholar
  36. 36.
    Y. Okazaki, K. Takahashi, K. Katsuki, et al., “Late Quaternary paleoceanographic changes in the southwestern Okhotsk Sea: evidence from geochemical, radiolarian, and diatom records,” Deep Sea Res., Part II 52, 2332–2350 (2005).CrossRefGoogle Scholar
  37. 37.
    Y. Okazaki, O. Seki, and T. Nakatsuka, “Cycladophora davisiana (Radiolaria) in the Okhotsk Sea: a key for reconstructing glacial ocean conditions,” J. Oceanogr. 62, 639–648 (2006).CrossRefGoogle Scholar
  38. 38.
    Y. Okazaki, A. Timmermann, L. Menviel, et al., “Deepwater formation in the North Pacific during the last glacial termination,” Science 329, 200–204 (2010).CrossRefGoogle Scholar
  39. 39.
    K. E. K. St. John and L. A. Krissek, “Regional patterns of Pleistocene ice-rafted debris flux in the North Pacific,” Paleoceanography 14(5), 653–662 (1999).CrossRefGoogle Scholar
  40. 40.
    S. Tanaka and K. Takahashi, “Late Quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages,” Deep-Sea Res. 52, 2131–2149 (2005).CrossRefGoogle Scholar
  41. 41.
    The GEBCO One Minute Grid, ver. 2.0,
  42. 42.
    P. R. Thompson and N. J. Shackleton, “North Pacific paleoceanography: late Quaternary coiling variations of planktonic foraminifer Neogloboquadrina pachyderma,” Nature 287, 829–833 (1980).CrossRefGoogle Scholar
  43. 43.
    C. Waelbroeck, L. Labeyrie, E. Michel, et al., “Sealevel and deep water temperature changes derived from benthic foraminifera isotopic records,” Quat. Sci. Rev. 21, 295–305 (2002).CrossRefGoogle Scholar
  44. 44.
    Y. J. Wang, H. Cheng, R. L. Edwards, et al., “A highresolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China,” Science 294, 2345–2348 (2001).CrossRefGoogle Scholar
  45. 45.
    J. Zhang, R. Woodgate, and R. Moritz, “Sea ice response to atmospheric and oceanic forcing in the Bering Sea,” J. Phys. Oceanogr., No. 40, 1729–1747 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • E. A. Ovsepyan
    • 1
    Email author
  • E. V. Ivanova
    • 1
  • L. O. Murdmaa
    • 1
  • G. N. Alekhina
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations