Skip to main content
Log in

Scenarios of nonlinear wave transformation in the coastal zone

Oceanology Aims and scope

Abstract

On the basis of field experiments and numerical modeling, we show that coastal zones are classifiable according to manifestations of wind wave nonlinearity, which herein is recognized as periodic energy exchange between the first and second nonlinear wave harmonics depending on the average bottom slope and the Iribarren and Ursell numbers. The results offer a basis for developing vulnerability criteria for the coastal zone taking into account its nonlinear dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. L. M. Brekhovskikh and V. V. Goncharov, Introduction into Mechanics of Continuum Applied to the Wave Theory (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  2. Glossary to Coastal (Offshore) Zone, Ed. by G. G. Gogoberidze, et al., (Ross. Gos. Gidrometeorol. Inst., St. Petersburg, 2008) [in Russian].

    Google Scholar 

  3. M. M. Zaslavskii and V. G. Polnikov, “Three-beam quasi-kinetic approximation applied to a task of evolution of spectrum of nonlinear gravitation waves on small depths,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 34(5), 677–685 (1998).

    Google Scholar 

  4. S. Yu. Kuznetsov and Ya. V. Saprykina, “Frequencydependent energy dissipation of irregular breaking waves,” Wat. Resour. 31(4), 384–392 (2004).

    Article  Google Scholar 

  5. I. O. Leont’ev, Coastal Dynamics: Waves, Currents, and Alluvium Flows (GEOS, Moscow, 2001) [in Russian].

    Google Scholar 

  6. Ya. V. Saprykina, S. Yu. Kuznetsov, Zh. Cherneva, and N. Andreeva, “Spatio-temporal variability of the amplitude-phase structure of storm waves in the coastal zone of the sea,” Oceanology (Engl. Transl.) 49(2), 182–192 (2009).

    Article  Google Scholar 

  7. S. M. Antsyferov, R. D. Kosyan, S. Yu. Kuznetsov, and Ya. V. Saprykina, “Physical grounds for the formation of the sediment flux in the coastal zone of a nontidal sea,” Oceanology (Engl. Transl.) 45,Suppl. 1, 183–190 (2005).

    Google Scholar 

  8. J. Battjes, “Surf similarity,” in Proceedings of 14th Con-ference on Coastal Engineering (Copenhagen, 1974).

    Google Scholar 

  9. B. Boczar-Karakiewicz and R. Davidson-Arnott, “Nearshore bar formation by non-linear process—a comparison of model results and field data,” Mar. Geol. 77, 287–304 (1987).

    Article  Google Scholar 

  10. H. Bredmose, H. A. Schäffer, and P. A. Madsen, “Boussinesq evolution equations: Numerical efficiency, breaking and amplitude dispersion,” Coastal Eng. J. 51(11–12), 1117–1142 (2004).

    Google Scholar 

  11. F. P. Bretherton, “Resonant interactions between waves: The case of discrete oscillation,” J. Fluid Mech. 20, 457–480 (1964).

    Article  Google Scholar 

  12. Coastal Engineering Manual, U.S. Army Corps of Engineers, Technical Report, 2003.

  13. R. G. Dean and R. A. Dalrymple, Coastal Processes with Engineering Applications (Cambridge Univ. Press, 2002).

    Google Scholar 

  14. Ya. Eldeberky, “Nonlinear effects in gravity waves propagating in shallow water,” Coastal Eng. J. 54(4), 21 (2012).

    Article  Google Scholar 

  15. Ya. Eldeberky and J. A. Battjes, “Parametrization of triad interactions in wave energy models,” in Proc. Coastal Dynamics Conference 95 (Gdansk, Poland, 1995), pp. 140–148.

    Google Scholar 

  16. Ya. Eldeberky and J. A. Battjes, “Spectral modeling of wave breaking: application to Boussinesq equations,” J. Geophys. Res. 101(CI), 1253–1264 (1996).

    Article  Google Scholar 

  17. Ya. Eldeberky and P. A. Madsen, “Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves,” Coastal Eng. J. 38, 1–24 (1999).

    Article  Google Scholar 

  18. Y. Kim and E. Powers, “Digital bispectral analysis and its application to non-linear wave interaction,” IEEE Trans. Plasma Sci. 1, 120–131 (1979).

    Article  Google Scholar 

  19. J. T. Kirby and J. M. Kaihatu, “Structure of frequency domain models for random wave breaking,” in Proc. 25th Intl. Conf. Coast. Eng. (Orlando, 1996), pp. 1144–1155.

    Google Scholar 

  20. S. Kuznetsov and Ya. Saprykina, “Mechanism of formation of secondary waves in coastal zone,” Proceedings of International Conference on Coastal Dynamics 2009 “Impact of Human Activities on Dynamic coastal processes”, Tokyo, Japan, 2009, Paper 9, Eds. by M. Mizuguchi and S. Sato. ISBN-13 978-981-4282-46-8

  21. P. A. Madsen and O. R. Sorensen, “Bound waves and triad interactions in shallow water,” J. Ocean Eng. 20(4), 359–388 (1993).

    Article  Google Scholar 

  22. A. D. Short, “Macro-meso tidal beach morphodynamics—an overview,” J. Coastal Res. 7(2), 417–436 (1991).

    Google Scholar 

  23. SWAN, Technical documentation. http://www.swan.tudelft.nl

  24. L. D. Wright and A. D. Short, “Morphodynamic variability of surf zones and beaches: a synthesis,” Mar. Geol. 56, 93–118 (1984).

    Article  Google Scholar 

  25. B. Zanuttigh and J. W. van der Meer, “Wave reflection from coastal structures in design conditions,” J. Coastal Eng. 55, 771–779 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. V. Saprykina.

Additional information

Original Russian Text © Ya.V. Saprykina, S.Yu. Kuznetsov, N.K. Andreeva, M.N. Shtremel, 2013, published in Okeanologiya, 2013, Vol. 53, No. 4, pp. 476–485.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saprykina, Y.V., Kuznetsov, S.Y., Andreeva, N.K. et al. Scenarios of nonlinear wave transformation in the coastal zone. Oceanology 53, 422–431 (2013). https://doi.org/10.1134/S0001437013040103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437013040103

Keywords

Navigation