Skip to main content
Log in

Nature of “transparency windows” in the broadband spectrum of seafloor microseisms

  • Marine Physics
  • Published:
Oceanology Aims and scope

Abstract

The peculiarities of the microseisms spectra shape when recording on the ocean floor in the frequency band of 0.003–20 Hz are examined. The origin of the stable minima in the microseisms spectrum (“transparency windows”) at frequencies of about 0.02–0.1 Hz and 5–15 Hz is analyzed. In these frequency bands, weak earthquake signals are recorded by bottom instruments. The origin of the low-frequency “transparency windows” can be explained by the conditions of the microseisms propagation in the oceanic waveguide (between the bottom and the water’s surface) in the abyssal plain zones. The results of the full-waveform numerical simulation of the seismoacoustic waves propagation in the oceanic environment and on the ocean-continent border are presented, and the experimental data as well. The peculiarities of the microseisms spectra in the band of high-frequency “transparency windows” can be caused by the constructive resonance in the water-saturated layer of bottom sediments. The theoretical foundation and experimental results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Aki and P. G. Richards, Quantitative Seismology, Theory and Methods, 2 vols. (Freeman, San Francisco, 1980).

    Google Scholar 

  2. Acoustic of the Ocean Ed. by L. M. Brekhovskikh (Nedra, Moscow, 1974) [in Russian].

    Google Scholar 

  3. L. M. Brekhovskikh and O. A. Godin, Acoustic of Stratified Mediums (Nedra, Moscow, 1989 [in Russian].

    Google Scholar 

  4. L. M. Brekhovskikh and V. V. Goncharov, “Sound Generation by Surface Waves Including Bottom Reflections,” Izv. Acad. Sci. USSR. Atmos. Okean. Phys. 5(6), 608–615 (1969).

    Google Scholar 

  5. L. P. Vinnik, “A Structure of 4–6-Second Microseisms,” Dokl. Akad. Nauk SSSR 162(5), 1041–1044 (1965).

    Google Scholar 

  6. V. I. Volovov, Sound Reflection from the Ocean Bottom (Nedra, Moscow, 1997) [in Russian].

    Google Scholar 

  7. B. Gutenberg, Physics of the Earth’s Interior (IL, Moscow, 1963) [in Russian].

    Google Scholar 

  8. I. N. Davidan, “Frequency Spectrum of the Wind Oscillation,” in The Study of the Northern Atlantic Basin, Ed. by B. A. Filippov (Gidrometeoizdat, Leningrad, 1969), pp. 185–210.

    Google Scholar 

  9. T. A. Dozorov and S. L. Solov’ev, “Registration of Bottom Seismic Noises in Diapason 0.01–10 Hz,” Izv. Acad. Sci. USSR. Phys. Solid Earth, No. 8, 10–19 (1990).

    Google Scholar 

  10. I. N. Ermakov, “Frequency Spectra of the Noise Field in Planar Waveguide,” Akust. Zh. 32(2), 264–267 (1986).

    Google Scholar 

  11. M. A. Zhdanov, D. G. Levchenko, and S. L. Solov’ev, “Fluctuation of Bottom Seismic Noises in Diapason 0.01–10 Hz (Northern Aegean Trough),” Okeanologiya 33(2), 299–303 (1993).

    Google Scholar 

  12. A. V. Il’in and G. V. Bogorov, “The Method of Quantitative Assessment of the Bottom Relief,” Okeanologiya 11(2), 326–333 (1971).

    Google Scholar 

  13. M. A. Isakovich, General Acoustic (Nedra, Moscow, 1973) [in Russian].

    Google Scholar 

  14. I. F. Kadykov, Submerged Low Frequency Acoustic Noise of the Ocean (Editorial URSS, Moscow, 1999) [in Russian].

    Google Scholar 

  15. Yu. M. Krylov, Wind, Waves, and Marine Ports (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  16. B. F. Kur’yanov, “Possibility of Passive Acoustic Tomography in Diffusive Noise Field,” in Acoustic in the Ocean (GEOS, Moscow, 2006), pp. 179–185.

    Google Scholar 

  17. V. D. Levchenko, “Asynchronous Algorithms as the Mean to Achieve the High Efficiency of Calculations,” Inform. Tekhnol. Vychislit. Sist., No. 1, 1–25 (2006).

    Google Scholar 

  18. D. G. Levchenko, Registration of the Broadband Seismic Signals and Possible Forerunners of Heavy Earthquakes on the Marine Bottom (Nauchnyi Mir, Moscow, 2005) [in Russian].

    Google Scholar 

  19. D. G. Levchenko, “Propagation of Storm Microseism at the Ocean-Continent Boundary,” Oceanology 49(2), 257–264 (2009).

    Article  Google Scholar 

  20. D. G. Levchenko, V. D. Levchenko, and A. V. Zakirov, “Dynamic Full-Wave Modeling of Storm Microseism Propagation in an Oceanic Environment,” Oceanology 51(4), 677–687 (2011).

    Article  Google Scholar 

  21. A. P. Lisitsyn, Sedimentation in the Oceans (Nedra, Moscow, 1974) [in Russian].

    Google Scholar 

  22. F. I. Monakhov, Low-Frequency Seismic Noise of the Earth (Nedra, Moscow, 1977) [in Russian].

    Google Scholar 

  23. Yu. P. Neprochnov, V. V. Sedov, and A. A. Ostrovskii, “Experimental Studies of Bottom Seismic Noise in the Ocean,” Okeanologiya 23(2), 276–283 (1983).

    Google Scholar 

  24. A. A. Ostrovskii, Bottom Seismic Experiments (Nedra, Moscow, 1998) [in Russian].

    Google Scholar 

  25. A. B. Rabinovich, Long Gravitational Waves in the Ocean: Capture, Resonance, and Irradiation (Gidrometeoizdat, St. Petersburg, 1993) [in Russian].

    Google Scholar 

  26. E. F. Savarenskii, Seismic Waves (Nedra, Moscow, 1972) [in Russian].

    Google Scholar 

  27. S. L. Solov’ev, Seismic Bottom Observations in USSR and Abroad (Nedra, Moscow, 1986) [in Russian].

    Google Scholar 

  28. V. N. Tabulevich, Storm Microseismic Oscillations and the Complex of Simultaneous Events in Atmosphere (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  29. I. Tolstoi and K. S. Klei, Acoustics of the Ocean (Mir, Moscow, 1969) [in Russian].

    Google Scholar 

  30. V. R. Fuks, Introduction into the Theory of Wave Transfers in Ocean (ILU, Leningrad, 1982) [in Russian].

    Google Scholar 

  31. Physics of Sound in Marine Sediments Ed. by L. Hampton (Plennum, New York, 1974).

    Google Scholar 

  32. R. G. Adair, J. A. Orcutt, and T. H. Jordan, “Low-Frequency Noise Observations in the Deep Ocean,” J. Acoust. Soc. Am. 80(2), 633–645 (1986).

    Article  Google Scholar 

  33. D. S. Agnew, “Vertical Seismic Noise at Very Low Frequencies,” J. Geophys. Res. 83(11), 5420–5424 (1978).

    Article  Google Scholar 

  34. I. N. Brune and J. Oliver, “The Seismic Noise of the Earth’s Surface,” Bull. Seism. Soc. Am., 49(4), 349–353 (1959).

    Google Scholar 

  35. N. R. Chapman and D. M. Chapman, “A Coherent Ray Model of Plane-Wave Reflection from a Thin Sediment Layer,” J. Acoust. Soc. Am. 94(5), 2731–2738 (1993).

    Article  Google Scholar 

  36. B. F. Cron and C. N. Sherman, “Spatial-Correlation Function for Various Noise Models,” J. Acoust. Soc. Am. 34(11), 1132–1136 (1962).

    Article  Google Scholar 

  37. C. Eskart, “The Theory of Noise in Continuous Media,” J. Acoust. Soc. Am. 25(2), 195–199 (1953).

    Article  Google Scholar 

  38. O. A. Godin and D. M. F. Chapman, “Shear-Speed Gradients and Ocean Seismoacoustic Noise Resonances,” J. Acoust. Soc. Am. 106(5), 2367–2382 (1999).

    Article  Google Scholar 

  39. K. A. Hasselmann, “A Statistical Analysis of the Generation of Microseisms,” Rev. Geophys. Res. 1(2), 177–210 (1963).

    Article  Google Scholar 

  40. H. Jeffreys, “the Reflection and Reposition of Elastic Waves,” Geophys. J. R. Astron. Soc. 1,Suppl. P. 321–334 (1926).

    Google Scholar 

  41. M. S. Longuet-Higgins, “Can Sea Waves Cause Microseisms?” in Proc. Symp. on Microseisms (Harriman, New York, 1952), pp. 74–86.

    Google Scholar 

  42. T. Ouchi, “Spectral Structure of High Frequency P and S Phases Observed by OBSs in the Mariana Basin,” J. Phys. Earth, No. 29, 305–326 (1981).

    Google Scholar 

  43. C. L. Pekeris, “Theory of Propagation of Explosive Sound in Shallow Water,” Geol. Soc. Am. Mem. 27, 1–117 (1948).

    Google Scholar 

  44. J. Peterson, “Observation and Modeling of Seismic Background Noise,” in U. S. Geol. Surv. Tech. Rept. 93-322 (Albuquerque, New Mexico, 1993).

    Google Scholar 

  45. F. Press and M. Ewing, “A Theory of Microseisms with Geologic Applications,” Trans. Am. Geophys. Union 29(3), 163–174 (1948).

    Google Scholar 

  46. H. Schmidt and W. A. Kuperman, “Estimation of Surface Noise Source Level from Low Frequency Seismoacoustic Ambient Noise Measurement,” J. Acoust. Soc. Am. 84(6), 2153–2162 (1988).

    Article  Google Scholar 

  47. M. Shinohara, et al., “Deep Sea Borehole Seismological Observatories in the Western Pacific: Temporal Variation of Seismic Noise Level and Event Detection,” Ann. Geophys. 49(2/3), 625–641 (2006).

    Google Scholar 

  48. G. H. Sutton and N. Barstow, “Ocean Bottom Ultralow-Frequency (ULF) Seismoacoustic Ambient Noise: 0.002 to 0.4 Hz,” J. Acoust. Soc. Am. 87(5), 2005–2012 (1990).

    Article  Google Scholar 

  49. G. Sutton, C. McGreery, F. Duennebier, and D. Walker, “Spectral Analyses of High-Frequency P n, S n Phases Recorded on Ocean Bottom Seismographs,” Geophys. Res. Lett., No. 5, 745–747 (1978).

    Google Scholar 

  50. D. Walker, G. Sutton, and C. McGreery, “Spectral Characteristics of High-Frequency Pn, Sn Phases in the Western Pacific,” J. Geophys. Res. 88, 4289–4298 (1983).

    Article  Google Scholar 

  51. S. C. Webb, “The Equilibrium Oceanic Microseism Spectrum,” J. Acoust. Soc. Am. 92(4), Part 1, 2141–2157 (1992).

    Article  Google Scholar 

  52. S. C. Webb and C. S. Cox, “Observations and Modeling of Seafloor Microseisms,” J. Geophys. Res. 91(B7), 7343–7358 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Levchenko.

Additional information

Original Russian Text © D.G. Levchenko, V.D. Levchenko, 2013, published in Okeanologiya, 2013, Vol. 53, No. 3, pp. 332–346.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levchenko, D.G., Levchenko, V.D. Nature of “transparency windows” in the broadband spectrum of seafloor microseisms. Oceanology 53, 294–307 (2013). https://doi.org/10.1134/S0001437013020100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437013020100

Keywords

Navigation