Skip to main content
Log in

Laboratory study of the influence of the densification during mixing effect on jet flows

  • Instruments and Methods
  • Published:
Oceanology Aims and scope

Abstract

A technique and some results of laboratory experiments, in which the densification during mixing of the salt water masses with the same initial densities occurs, are presented. A graphical interpretation of the densification during mixing and an empirical formula describing the dependence of the water density on temperature and concentration of the dissolved salt NaCl at atmospheric pressure are given. Examples of spreading of the initially horizontal, inclined and vertical round jets as well as a vertical plane jet are considered. In all examples, the jet submerged up to the bottom of the experimental setup. It was found that the submergence velocity was on the order of 0.5 ± 0.1 cm/s. The influence of the double diffusion on the jet submergence velocity in the salt water is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. B. Bocharov and T. E. Ovchinnikova, “Numerical Modeling of Thermobar in the Baikal Lake,” Vychislitel’nye Tekhnologii 1(3), 21–28 (1996).

    Google Scholar 

  2. V. I. Bukreev, “Influence of Nonmonotonic Dependence of Water Density on Temperature on Rain Water Cycle in Freshwater Reservoir,” Izv. RAN, Fiz. Atmosf. Okeana 41(4), 567–570 (2005).

    Google Scholar 

  3. V. I. Bukreev, “Double Diffusion at the Ice Melting in the Salt Water,” Izv. RAN, Fiz. Atmosf. Okeana 43(6), 826–830 (2007).

    Google Scholar 

  4. V. I. Bukreev, “Flow Plunging Stimulated by Nonmonotonic Dependence of Water Density on Temperature,” Okeanologiya 51(4), 612–620 (2011).

    Google Scholar 

  5. A. Gill, Dynamics of Atmosphere and Ocean (Mir, Moscow, 1986), Vol. 2, [in Russian].

    Google Scholar 

  6. N. N. Zubov, Marine Waters and Ice (Gidrometeoizdat, Moscow, 1938) [in Russian].

  7. N. N. Zubov and D. S. Sabinin, Computation of Compaction at the Marine Water Mixture (Gidrometeoizdat, Moscow, 1958) [in Russian].

    Google Scholar 

  8. J. Peri, Reference Book of the Chemical Engineer (Khimik, Leningrad, 1969), Vol. 1, [in Russian].

    Google Scholar 

  9. A. I. Tikhomirov, Thermal Conditions of the Large Lakes (Nauka, Leningrad, 1983) [in Russian].

    Google Scholar 

  10. K. N. Fedorov, “Role of Densification in Dynamics of the Mixture of Oceanic Fronts,” Dokl. Akad. Nauk SSSR 261(4), 985–988 (1981).

    Google Scholar 

  11. K. N. Fedorov, Physical Nature and Structure of Oceanic Fronts (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  12. N. P. Fofonov, “Dynamic Effects of Cabbeling on the Structure of Thermal Wedge,” Okeanologiya 55(6), 824–832 (1995).

    Google Scholar 

  13. N. P. Chubarenko, Horizontal Convection under Submerged Slopes (Terra Baltika, Kaliningrad, 2010) [in Russian].

    Google Scholar 

  14. C. T. Chen and F. J. Millero, “Precise Thermodynamic Properties for Natural Water Covering Only the Limnological Range,” Limnol. Oceanogr. 31(3), 657–662 (1986).

    Article  Google Scholar 

  15. N. P. Fofonoff, “Some Properties of Sea Water Influencing the Formation of Antarctic Bottom Water,” Deep-Sea Res. 4(1), 32–35 (1956).

    Google Scholar 

  16. F. A. Forel, Le Leman: Monographie Limnologoque: Mechanique, Chemie, Thermique, Optique, Acustique (F. Rouge, Lausanne, 1895), Vol. 2.

    Google Scholar 

  17. T. D. Foster, “An Analysis of the Cabbeling Instability in Seawater,” J. Phys. Oceanogr. 2, 294–301 (1972).

    Article  Google Scholar 

  18. R. R. Harcourt, “Thermobaric Cabbeling over Maud Rise: Theory and Large Eddy Simulation,” Progress in Oceanography 67,Issues 1–2, 186–224 (2005).

    Article  Google Scholar 

  19. J. C. K. Huang, “The Thermal Bar,” Geophys. Fluid Dyn. 3(1), 1–25 (1972).

    Article  Google Scholar 

  20. S. Musman, “Penetrative Convection,” J. Fluid Mech. 31,Part 2, 343–360 (1968).

    Article  Google Scholar 

  21. D. T. Talley and J. -Y. Yun, “The Role of Cabbeling and Double Diffusion in Setting the Density of the North Pacific Intermediate Water Salinity Minimum,” J. Phys. Oceanography 36(6), 1538–1549 (2001).

    Article  Google Scholar 

  22. A. A. Townsend, “Natural Convection in Water over an Ice Surface,” Q. J. Roy Meteorol. Soc. 90, 248–259 (1964).

    Article  Google Scholar 

  23. E. Witte, “Zur Theorie der Stromkabbelungen,” Gaea, Köln 38(3), 484–487 (1902).

    Google Scholar 

  24. S. S. Zilitinkevch, K. D. Kreiman, and A. Yu. Terzhevik, “The Thermal Bar,” J. Fluid Mech. 236, 27–42 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bukreev.

Additional information

Original Russian Text © V.I. Bukreev, 2013, published in Okeanologiya, 2013, Vol. 53, No. 1, pp. 121–129.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukreev, V.I. Laboratory study of the influence of the densification during mixing effect on jet flows. Oceanology 53, 110–118 (2013). https://doi.org/10.1134/S0001437013010037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437013010037

Keywords

Navigation