Advertisement

Oceanology

, Volume 52, Issue 2, pp 249–260 | Cite as

Upper quaternary biostratigraphy and formation environments of the southwestern Atlantic Core ACB-17-1447 inferred from micropaleontological data

  • O. B. DmitrenkoEmail author
  • N. P. Lukashina
  • N. S. Os’kina
Marine Geology

Abstract

The foraminiferal (planktonic and benthic) and nannofosssil assemblages have been analyzed in the sediments of Core ACB-17-1447 taken from the South America continental slope north of the Rio Grande Rise piedmont during Cruise 17 of the R/V Akademik Sergey Vavilov. The core section is largely composed of carbonate and marly hemipelagic mud. The Quaternary age of the host sediments is evident from the occurrence of the planktonic foraminiferal index species Globorotalia truncatulinoides. Based on the nannofossil assemblages, the core sediments are attributed to the upper Pleistocene-Holocene. They contain abundant reworked Pliocene, Miocene, and Paleogene taxa transported from the slopes of the underwater Rio Grande Rise. The paleotemperature analysis of the planktonic foraminifers provided data for constructing the temperature curve that demonstrates two warm peaks. During the first warm period (Interval of 7–9 cm), the surface water temperature was as high as 26°C (Holocene optimum), which exceeds by 3–4°C its presentday values and implies the more intense warm Brazil Current. The earlier warm peak with temperatures up to 24°C recorded in the upper Pleistocene sediments (Interval of 69–71 cm) most likely reflects the 3rd oxygenisotope stage (MIS 3), which corresponds to the interstadial phase of the last glaciation (30–40 ka ago). Based on the abundances, taxonomic diversity, and proportions of the characteristic species of benthic foraminifers, the Core ASV-17-1447 section is divided into six intervals correlated with the marine isotopic stages defined by both the planktonic foraminifers and climatic changes evident from the variations in the bottom water circulation along the southwestern slope of the Brazilian Basin during the Late Quaternary.

Keywords

Surface Water Temperature Benthic Foraminifer Planktonic Foraminifer North Atlantic Deep Water Calcareous Nannofossil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Barash, Geomorphology and Geological Structure of the Bottom. Part III. Atlantic Ocean, Ed. by O.K. Leont’ev (Mysl’, Moscow, 1977) [in Russian].Google Scholar
  2. 2.
    M. S. Barash, Quaternary Paleoceanology of the Atlantic Ocean (Nauka, Moscow, 1988) [in Russian].Google Scholar
  3. 3.
    M. S. Barash, V. M. Kuptsov, and N. S. Os’kina, “Atlantic Ocean: New Evidence on the Chronology of Events in Late Pleistocene and Holocene,” Bull. Komissii Izuch. Chetvertichn. Perioda 17(3), 425–434 (1987).Google Scholar
  4. 4.
    O. B. Dmitrenko, “Detailing the Zonal Scale of the Quaternary Sediments by Coccoliths (Rio Grande Upland of the Atlantic),” Okeanologiya 26(4), 617–623 (1987).Google Scholar
  5. 5.
    O. B. Dmitrenko, Biogeography of the Atlantic and Indian Oceans during the Cenozoic Deduced by Nanoplankton (Nauka, Moscow, 1993) [in Russian].Google Scholar
  6. 6.
    E. M. Emel’yanov and E. A. Romankevich, Geochemistry of the Atlantic: Organic Matter and Phosphorus (Nauka, Moscow, 1979) [in Russian].Google Scholar
  7. 7.
    A. P. Lisitsyn, Avalanche Sedimentation and Sedimentation Gaps in Seas and Oceans (Nauka, Moscow, 1983) [in Russian].Google Scholar
  8. 8.
    N. P. Lukashina, “Benthic Foraminifera Distribution Patterns in the Northern Atlantic,” Okeanologiya 28(4), 632–638 (1988).Google Scholar
  9. 9.
    N. P. Lukashina, “Late Quaternary Abyssal Circulation of Waters in the Canary Basin from Data on Benthic Foraminifera,” Okeanologiya 32(2), 326–336 (1992).Google Scholar
  10. 10.
    N. P. Lukashina, Paleoceanology of the North Atlantic in the Late Mesozoic and Cenozoic and the Emergence of the Modern Global Thermohaline Conveyor According to the Study of Foraminifera (Nauchnyi Mir, Moscow, 2008) [in Russian].Google Scholar
  11. 11.
    N. P. Lukashina, V. V. Sivkov, O. B. Dmitrenko, and N. S. Os’kina, “Late Quaternary Sedimentation Conditions and Water Mass Northward of the Vema Channel,” in “Geology of Seas and Oceans,” Proc. XVIII Int. Sci. Conf. (School) on Marine Geology, Ed. by A. P. Lisitsyn (GEOS, Moscow, 2009), Vol. 1, pp. 218–223 [in Russian].Google Scholar
  12. 12.
    E. G. Morozov, T. A. Demidova, S. C. Lappo, et al., “Antarctic Bottom Water Flow through the Vema Channel,” Dokl. Earth Sci. 390(3), 593–596 (2003).Google Scholar
  13. 13.
    V. N. Sval’nov, O. B. Dmitrenko, G. Kh. Kazarina, et al., “Quaternary Sediments of the Axial Zone of the Basin of Brazil,” Litol. Polezn. Iskop., No. 2, 133–152 (2007).Google Scholar
  14. 14.
    V. V. Sivkov, “Report of the Geoacoustics Team. Bottom Sediments,” in Report on the 7th Cruise of R/V “Akademik Sergei Vavilov” (IO RAN, Moscow, 2003), Vol. 2, pp. 81–84 [in Russian].Google Scholar
  15. 15.
    N. S. Skornyakova, E. G. Kozhevnikova, I. O. Murdmaa, et al., “Characteristics of the Pleistocene-Holocene Pelagic Sedimentation in the Basin of Brazil (Atlantic Ocean),” Litol. Polezn. Iskop., No. 3, 3–20 (1992).Google Scholar
  16. 16.
    Stepanov, V.N., Oceans (Znanie, Moscow, 1974). [in Russian].Google Scholar
  17. 17.
    V. N. Stepanov, Oceanosphere (Mysl’, Moscow, 1983) [in Russian].Google Scholar
  18. 18.
    M. S. Barash, N. S. Oskina, and N. S. Blyum, “Quaternary Biostratigraphy and Surface Paleotemperatures by Means of Planktonic Foraminifers Sites 515 and 518 DSDP Leg 72,” in Init. Repts. of the Deep Sea Drilling Project, Sci. Results, Ed. by P. E. Barker et al. (U.S. Govt. Printing Office, Washington, DC, 1983), Vol. 72, pp. 849–869.Google Scholar
  19. 19.
    Initial Reports of the Deep Sea Drilling Project, Sci. Results, Ed. by P. E. Barker, R. I. Carlson, and D. A. Johnson (U.S. Govt. Printing Office, Washington, DC, 1983), Vol. 72.Google Scholar
  20. 20.
    W. H. Berger, “Paleoceanography: The Deep-Sea Record,” in The Oceanic Lithosphere. The Sea, Ed. by C. Emiliani et al. (Wiley, New York, 1981), Vol. 7, pp. 1437–1519.Google Scholar
  21. 21.
    D. Bukry, “Coccolith Age Determination, Leg 2, Deep-Sea Drilling Project,” in Init. Repts. of the Deep Sea Drilling Project, Sci. Results, Ed. by N. A. Melvin et al. (U.S. Govt. Printing Office, Washington, DC, 1970), Vol. 2, pp. 349–355.Google Scholar
  22. 22.
    D. Bukry, “Biostratigraphy of Cenozoic Marine Sediments by Calcareous Nannofossils,” Micropaleontology 24(1), 44–60 (1978).CrossRefGoogle Scholar
  23. 23.
    C. Emiliani and S. Shackleton, “The Brunes Epoch: Isotopic Paleotemperatures and Geochronology,” Science 183, 511–514 (1974).CrossRefGoogle Scholar
  24. 24.
    B. N. Corliss, “Recent Benthonic Foraminifera Distribution in the Southeast Indian Ocean: Inferred Bottom Water Routes and Ecological Implications,” Mar. Geol. 31, 115–138 (1979).CrossRefGoogle Scholar
  25. 25.
    S. Gartner, “Calcareous Nannofossil Stratigraphy and Revised Zonation of the Pleistocene,” Mar. Micropaleont. 2, 1–25 (1977).CrossRefGoogle Scholar
  26. 26.
    D. F. Hodell and J. P. Kennett, “Climatically Induced Changes in Vertical Water Masses Structure of the Vema Channel During the Pliocene: Evidence from Deep Sea Drilling Project Holes 516 A, 517 and 518,” in Init. Repts. of the Deep Sea Drilling Project, Sci. Results, Ed. by P. E. Barker et al. (U.S. Govt. Printing Office, Washington, DC, 1983), Vol. 72, pp. 907–919.Google Scholar
  27. 27.
    D. Johnson, “A Paleocirculation of the Southwestern Atlantic,” in Init. Repts. of the Deep Sea Drilling Project, Sci. Results, Ed. by P. E. Barker et al. (U.S. Govt. Printing Office, Washington, DC, 1983), Vol. 72, pp. 977–994.Google Scholar
  28. 28.
    D. A. Johnson and C. S. Peters, “Late Cenozoic Sedimentation and Erosion on the Rio Grande Rise,” J. Geol. 87, 371–392 (1979).CrossRefGoogle Scholar
  29. 29.
    D. A. Johnson, V. Ledbetter, and L. Burckle, “Vema Channel Paleo-Oceanography Dissolution Cycles and Episodic Bottom Water Flow,” Mar. Geol. 23, 1–33 (1977).CrossRefGoogle Scholar
  30. 30.
    G. P. Lohman, “Abyssal Benthonic Foraminifera as Hydrographic Indicators in the Western South Atlantic Ocean,” J. Foram. Res. 8(1), 6–34 (1978).CrossRefGoogle Scholar
  31. 31.
    M. T. Ledbetter, “A Late Pleistocene Time-Series of Bottom-Current Speed in the Vema Channel,” Palaeogeogr. Climatol. Ecol. 53(1), 97–105 (1986).CrossRefGoogle Scholar
  32. 32.
    E. Martini, “Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation,” in Proc. II Planktonic Confer (Roma, 1971), Vol. 2, pp. 739–785.Google Scholar
  33. 33.
    G. A. Mead, “Recent Benthic Foraminifera in the Polar Front Region of the Southwest Atlantic,” Micropaleontology 31(3), 221–248 (1985).CrossRefGoogle Scholar
  34. 34.
    L. C. Peterson and G. P. Lohman, “Major Change in Atlantic Deep and Bottom Waters 700.000 Yr Ago: Benthonic Foraminiferal Evidence from the South Atlantic,” Quat. Res. 17, 26–38 (1982).CrossRefGoogle Scholar
  35. 35.
    K. Perch-Nielsen, “Albian to Pleistocene Calcareous Nannofossils from the Western South Atlantic, DSDP, Leg 39,” in Init. Repts. of the Deep Sea Drilling Project, Sci. Results, Ed. by K. Perch-Nielsen et al. (U.S. Govt. Printing Office, Washington, DC, 1977), Vol. 39, pp. 699–823.Google Scholar
  36. 36.
    S. S. Streeter, “Bottom Water and Benthonic Foraminifera in the North Atlantic-Glacial-Interglacial Contrasts,” Quat. Res. 3, 131–141 (1973).CrossRefGoogle Scholar
  37. 37.
    W. Zenk and E. Morozov, “Decadal Warming of the Coldest Antarctic Bottom Water Flow Through the Vema Channel,” Geophys. Res. Lett. 34(L 14607), 1–5 (2007). doi: 10.1029/2007Gl030340Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. B. Dmitrenko
    • 1
    Email author
  • N. P. Lukashina
    • 2
  • N. S. Os’kina
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Atlantic Division, Shirshov Institute of OceanologyRussian Academy of SciencesKaliningradRussia

Personalised recommendations