Skip to main content
Log in

Influence of the environmental factors on the intensity of the oxygen, ammonium, and phosphate metabolism in the agar-containing seaweed Ahnfeltia tobuchiensis (Ahnfeltiales, Rhodophyta)

  • Marine Biology
  • Published:
Oceanology Aims and scope

Abstract

A complex study of the influence of various environmental factors on the rate of the oxygen (MO 2), ammonium (MNH 4), and phosphate (MPO 4) metabolism in Ahnfeltia tobuchiensis has been carried out in situ in the Izmena Bay of Kunashir Island. The following environmental factors have been included into the investigation: the photosynthetically active radiation (PAR); the ammonium (NH4); the phosphate (PO4); and the tissue content of carbon (C), nitrogen (N), phosphorus (P), and chlorophyll a (Chl). The population of agar-containing seaweed A. tobuchiensis forms a layer with a thickness up to 0.5 m, which occupies about 23.3 km2; the population’s biomass is equal to 125000 tons. The quantitative assessment of the organic matter production and nutrient consumption during the oxygen metabolism (MO 2) has been carried out for the whole population. It has been shown that the daily rate depends on the PAR intensity, the seawater concentrations of PO4 and NH4, and the tissue content of N and P (r 2 = 0.78, p < 0.001). The daily NH4 consumption averages 0.21 μmol/(gDW h) and depends on the NH4 and O2 concentrations in the seawater and on the C and Chl a content in the algal tissues (r 2 = 0.64, p < 0.001). The daily PO4 consumption averages 0.01 μmol/(gDW h) and depends on the NH4 concentration in the seawater and on the P content in the algal tissues (r 2 = 0.40, p < 0.001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. G. M. Voskoboinikov, “Electron-Microscopic Study of Ahnfeltia tobuchiensis Cells from Different Parts of the Thallus,” in Biology of Ahnfeltia (DVNTS Akad. Nauk SSSR, Vladivostok, 1980), pp. 21–27 [in Russian].

    Google Scholar 

  2. N. Draiper and G. Smit, Applied Regression Analysis (Statistika, Moscow, 1973) [in Russian].

    Google Scholar 

  3. S. M. Zayarnaya, P. G. Krainyuk, V. I. Ryabushko, and T. S. Tarasova, “Determination of Oxygen, Oxidation, and Salinity,” in Methods of Chemical Analysis in Hydrobiological Studies (DVNTS Akad. Nauk SSSR, Vladivostok, 1979), pp. 44–62 [in Russian].

    Google Scholar 

  4. V. I. Zvalinskii, “Light and Temperature Conditions of Ahnfeltia Living in the Stark Strait, Sea of Japan,” in Biology of anfel’tsii (DVNTS Akad. Nauk SSSR, Vladivostok, 1980), pp. 28–34 [in Russian].

    Google Scholar 

  5. M. B. Ivanova, A. V. Novozhilov, and A. P. Tsurpalo, “Living Conditions and Some Features of Floro-Faunistic Structure of Exploitable Natural Fields of Ahnfeltia tobuchiensis in Stark Strait (Peter the Great Bay, Sea of Japan) and Izmena Bay (Kunashir Island, Kuril Islands),” in Basics of Aquaculture Biotechnology in the Far East of Russia (Izv. TINRO, Vladivostok, 1994), pp. 83–99 [in Russian].

    Google Scholar 

  6. V. F. Makienko, “The History of Study of Ahnfeltia plicata (Huds): Ahnfeltia Species near Far-East Coasts of the USSR,” in Biology of Ahnfeltia (DVNTS Akad. Nauk SSSR, Vladivostok, 1980), pp. 5–14 [in Russian].

    Google Scholar 

  7. A. V. Novozhilov, “Influence of Hydrodynamic Conditions on the Structure and Productivity of Natural Fields of Ahnfeltia tobuchiensis,” Extended Abstract of Candidate’s Dissertation in Biology (Vladivostok, 1989).

  8. E. P. Odum, Basic Ecology (Saunders, Philadlelphia, 1983; Mir, Moscow, 1986).

    Google Scholar 

  9. L. I. Popova, I. I. Cherbadgy, and D. A. Nekrasov, “Hydrochemical Living Conditions of Populations of the Red Alga Ahnfeltia tobuchiensis in the Izmena Bay (Kunashir Island),” Biol. Morya 26(5), 332–338 (2000).

    Google Scholar 

  10. L. N. Propp, S. D. Kashenko, and M. V. Propp, “Determination of Main Nutrients,” in Methods of Chemical Analysis in Hydrobiological Studies (DVNTS Akad. Nauk SSSR, Vladivostok, 1979), pp. 63–88 [in Russian].

    Google Scholar 

  11. M. V. Propp and L. N. Propp, “Hydrochemical Bases of Primary Production in the Coastal Area of the Sea of Japan,” Biol. Morya, No. 1, 29–37 (1981).

  12. M. V. Propp and L. N. Propp, “Hydrochemical Indices and Chlorophyll a Content in Water of the Coastal Area near Kuril Islands,” Biol. Morya, No. 4, 68–70 (1988).

  13. E. A. Titlyanov, A. V. Novozhilov, and I. I. Cherbadgy, Ahnfeltia tobushiensis: Biology, Ecology, and Productivity (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  14. K. M. Khailov and V. P. Parchevskii, Hierarchical Regulation of Structure and Function of Marine Plants (Naukova Dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  15. I. I. Cherbadgy and E. A. Titlyanov, “Biology, Ecology and Productivity of the Red Alga Ahnfeltia tobushiensis,” Biol. Morya 24(2), 71–81 (1998).

    Google Scholar 

  16. I. I. Cherbadgy and L. I. Popova, “Effect of Environmental Factors on Oxygen Exchange in the Population of Ahnfeltia tobuchiensis (Kanno et Matsubara) Mak. (Ahnfeltiales, Rhodophyta),” Algologiya, No. 2, 222–233 (2002).

  17. I. I. Cherbadgy, L. I. Sabitova, and V. A. Parenskii, “Influence of Environmental Factors and Concentration of Nutrients in Tissues of the Algae Ahnfeltia tobuchiensis (Rhodophyta: Ahnfeltiales) on Photosynthesis and Dark Respiration of Its Population,” Biol. Morya 36(4), 274–285 (2010).

    Google Scholar 

  18. M. J. Atkinson and S. V. Smith, “C: N: P Ratio of Benthic Marine Plants,” Limnol. Oceanogr. 28, 568–574 (1983).

    Article  Google Scholar 

  19. N. G. Barr and T. A. Rees, “Nitrogen Status and Metabolism in the Green Seaweed Enteromorpha intestinalis: An Examination of Three Natural Populations,” Mar. Ecol.: Proc. Ser. 249, 133–144 (2003).

    Article  Google Scholar 

  20. A. R. O. Chapman, “Nutrient Cycling in Marine Ecosystem,” J. Limnol. Soc. Sth. Afr. 12, 22–42 (1986).

    Google Scholar 

  21. I. I. Cherbadgy and L. I. Popova, “Distribution, Biomass and Primary Production of Ahnfeltia tobuchiensis Population in the Bay of Izmena, Kunachir Island,” Phycol. Res. 46, 1–10 (1998).

    Article  Google Scholar 

  22. N. J. Conolly and E. A. Drew, “Physiology of Laminaria IV. Nutrient Supply and Daylength, Major Factors Affecting Growth of L. digitata and L. saccharina,” Mar. Ecol. 6, 299–320 (1985).

    Article  Google Scholar 

  23. J. A. De Boer, The Biology of Seaweeds, Ed. by C. S. Lobban and M. J. Wynne (Blackwell Scientific, Oxford, 1981), pp. 356–392.

    Google Scholar 

  24. D. T. Dy and H. T. Yap, “Surge Ammonium Uptake of the Cultured Seaweed, Kappaphycus alvarezii (Doty) Doty (Rhodophyta: Gigartinales),” Exper. Mar. Biol. Ecol. 265, 89–100 (2001).

    Article  Google Scholar 

  25. P. G. Falkowski and T. G. Owens, “Light-Shade Adaptation: Two Strategies in Marine Phytoplankton,” Plant. Physiol. 66, 592–595 (1980).

    Article  Google Scholar 

  26. I. Hernandez, G. Peralta, J. L. Perez-Llorens, et al., “Biomass and Dynamics of Growth of Ulva Species in Pallmones River Estuary,” J. Phycol. 33, 764–772 (1997).

    Article  Google Scholar 

  27. R. Hwang, C. Tsai, and T. Lee, “Assessment of Temperature and Nutrient Limitation on Seasonal Dynamics among Species of Sargassum from a Coral Reef in Southern Taiwan,” J. Phycol. 40, 463–473 (2004).

    Article  Google Scholar 

  28. S. W. Jeffrey and G. F. Humphrey, “New Spectrophotometric Equations for Determining Chlorophylls a, b, c 1, and c 2 in Higher Plants, Algae and Natural Phytoplankton,” Biochem. Physiol. Pflanz. 167, 191–194 (1975).

    Google Scholar 

  29. B. E. Lapointe, M. M. Littler, and D. S. Littler, “Nutrient Availability to Marine Macroalgae in Siliciclastic versus Carbonate-Rich Coastal Waters,” Estuaries 15(1), 75–82 (1992).

    Article  Google Scholar 

  30. B. E. Lapointe, P. J. Barile, M. M. Littler, et al., “Macroalgal Blooms on Southeast Florida Coral Reefs. I. Nutrient Stoichiometry of the Invasive Green Alga Codium isthmocladum in the Wider Caribbean Indicates Nutrient Enrichment,” Harmful algae 4, 1092–1105 (2005).

    Article  Google Scholar 

  31. B. Martinez and J. M. Rico, “Seasonal Variation of P Content and Major N Pools in Palmaria palmate (Rhodophyta),” J. Phycol. 38, 1082–1089 (2002).

    Article  Google Scholar 

  32. A. E. Maxwell, Multivariate Analysis in Behavioral Research (Chapman and Hall, London, 1977).

    Google Scholar 

  33. M. Menendez, J. Herrera, and F. A. Comin, “Effect of Nitrogen and Phosphorus Supply on Growth, Chlorophyll Content and Tissue Composition of the Macroalga Chaetomorpha linum (O.F. Mull.) Kutz in a Mediterranean Coastal Lagoon,” Sci. Mar. 66, 355–364 (2002).

    Article  Google Scholar 

  34. M. F. Pedersen, “Transient Ammonium Uptake in the Macroalga Ulva lactuca (Chlorophyta): Nature, Regulation, and the Consequences for Choice of Measuring Technique,” J. Phycol. 30, 980–986 (1994).

    Article  Google Scholar 

  35. M. F. Pedersen and J. Borum, “Nutrient Control of Algal Growth in Estuarine Waters. Nutrient Limitation and the Importance of Nitrogen Requirements and Nitrogen Storage among Phytoplankton and Species of Macroalgae,” Mar. Ecol.: Proc. Ser. 142, 261–272 (1996).

    Article  Google Scholar 

  36. M. V. Propp, M. R. Garber, and V. J. Ryabushko, “Unstable Processes in the Metabolic Rate Measurement in Flow-Through System,” Mar. Biol. (Berlin) 67, 47–51 (1982).

    Article  Google Scholar 

  37. J. Ramus, “Productivity of Seaweeds,” in Primary Productivity and Biogeochemical Cycles in the Sea, Ed. by P. G. Falkowski and A. D. Woodhead (Plenum, New York, 1992), pp. 239–255.

    Google Scholar 

  38. V. N. R. Rao and V. Selvarani, “Phosphate Uptake in Amphora coffeaeformis (Agardh) Kutz, Navicula pelliculosa (Breb.) Hilse and Thalassiosira fluviatilis Hustedt,” Phykos 28(1–2), 216–230 (1989).

    Google Scholar 

  39. A. C. Redfield, B. H. Ketchum, and F. A. Richards, “The Influence of Organisms on the Composition of Sea-Water,” In the Sea, Ed. by M. N. Hill (Wiley Interscience, New York, 1963), Vol. 2, pp. 26–77.

    Google Scholar 

  40. J. D. H. Strickland and T. R. Parsons, “A Manual of Sea Water Analysis,” Bull. Fisher. Res. Board. Can. No. 125 (1972).

  41. P. J. Syrett, “Nitrogen Metabolism of Microalgae,” Physiological Bases of Phytoplankton Ecology. Can. Bull. Fish Aquaat. Sci. 210, 182–210 (1981).

    Google Scholar 

  42. D. H. Turpin, “Effects of Inorganic N Availability on Algal Photosynthesis and Carbon Metabolism,” J. Phycol. 27, 14–20 (1991).

    Article  Google Scholar 

  43. P. A. Wheeler and Bo. R. Bjornsater, “Seasonal Fluctuations in Tissue Nitrogen, Phosphorus, and N: P for Five Macroalgal Species Common to the Pacific Northwest Coast,” J. Phycol. 28, 1–6 (1992).

    Article  Google Scholar 

  44. B. E. Young, M. J. Dring, G. Savidge, et al., “Seasonal Variation in Nitrate Reductase Activity and Internal N Pools in Intertidal Brown Algae Are Correlated with Ambient Nitrate Concentrations,” Plant Cell Environ. 30, 764–774 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Cherbadgy.

Additional information

Original Russian Text © I.I. Cherbadgy, L.I. Sabitova, 2011, published in Okeanologiya, 2011, Vol. 51, No. 1, pp. 54–64.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherbadgy, I.I., Sabitova, L.I. Influence of the environmental factors on the intensity of the oxygen, ammonium, and phosphate metabolism in the agar-containing seaweed Ahnfeltia tobuchiensis (Ahnfeltiales, Rhodophyta). Oceanology 51, 49–59 (2011). https://doi.org/10.1134/S0001437011010024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437011010024

Keywords

Navigation