Skip to main content

Advertisement

Log in

Invertebrates in the trophic webs of the white sea near-shore ecosystem (using the example of Gryaznaya Inlet)

  • Marine Biology
  • Published:
Oceanology Aims and scope

Abstract

In the food clods of the mass species of macrobenthos of the Gryaznaya Inlet, nonstructured matter plays a great role. We identify this matter as derivates from plant tissues, which are the products of their external metabolism and degradation, with associated microorganisms. This way, the near-shore community considered is supported by a detrital trophic web. This feature distinguishes it from the similar community of the near-Atlantic waters that is based on a pasture web, at least as far as the bivalve mass species are concerned. The groups of the near-shore species of Gryaznaya Inlet separated by a cluster analysis are identified as consortia, combined by the biogeochemical conditions (edifice factor), which can hardly be analyzed at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Bek, “Trophic Structure of the Near-Shore Community of the White Sea,” in Biological Resources of the White Sea. Tr. BBS MGU (Mosk. Gos. Univ., Moscow, 1990), No. 7, pp. 55–70 [in Russian].

    Google Scholar 

  2. T. A. Bek, “Intertidal Infauna: Substrates and Cyclic Successions,” in Problems of Studies, Rational Use, and Protection of the Natural Resources of the White Sea. VIII Regional Scientific Conference, April 16–18, 2001 (Pravda Severa, Arkhangel’sk, 2001), pp. 62–63 [in Russian].

    Google Scholar 

  3. T. A. Bek and L. I. Potapova, “Destruction of Macrophytes in the Intertidal Zone of the White Sea,” Ekologiya, No. 1, 80–82 (1986).

  4. Biochemical Trophodynamics in Near-Shore Marine Ecosystems (Naukova Dumka, Kiev, 1974) [in Russian].

  5. Ya. A. Birshtein, “Annual Changes in the Benthos Biomass in the North Caspian,” Zool. Zh. 24(3), 133–145 (1945).

    Google Scholar 

  6. L. L. Bondarchuk, “Diatomaceous Algae of the Near-Shore Grounds in Kandalaksha Bay of the White Sea,” in Bottom Flora and Production in the Marginal Seas of the USSR (Nauka, Moscow, 1980), pp. 63–72 [in Russian].

    Google Scholar 

  7. E. V. Borutskii, K. A. Voskresenskii, G. S. Karzinkin, et al., “Basic Principles of the Trophological Line in Hydrobiology,” in Trophology of Aquatic Animals. Results and Problems (Nauka, Moscow, 1973), pp. 5–9 [in Russian].

    Google Scholar 

  8. E. N. Bubnova, L. L. Velikanov, O. E. Marfenina, and M. A. Shcheglov, “Characteristic of Microbiota of Soil in Land Biocoenoses and of the Intertidal Zone in the Vicinity of the White Sea Biological Station, MGU,” in Tr. Belomorskoi biol. stantsii (Russkii Universitet, Moscow, 2002), Vol. VIII, pp. 37–49 [in Russian].

    Google Scholar 

  9. I. V. Burkovskii, Structural-Functional Organization and Stability of Marine Bottom Communities (By the Example of the White Sea Sandy Intertidal Zone) (Mosk. Gos. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  10. I. V. Burkovskii and A. P. Stolyarov, “Spatiotemporal Organization of a Saline Marsh in the White Sea,” Vestn. Mosk. Univ., Ser. 16, Biology, No. 1, 34–41 (2001).

  11. I. V. Burkovskii, A. P. Stolyarov, and M. Yu. Kolobov, “Spatial Organization and Functioning of a Marine (Estuarine) Near-Shore Ecosystem,” Usp. Sovrem. Biol. 122(4), 316–325 (2002).

    Google Scholar 

  12. V. B. Vozzhinskaya, Bottom Macrophytes of the White Sea (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  13. V. A. Vorob’ev, “Benthos of the Sea of Azov,” Tr. AzCherNIRO, No. 13, 1–192 (1949).

  14. I. S. Gramberg and Yu. E. Pogrebitskii, “Geodynamical System, Deep Structure, and Structural Evolution of the Arctic Ocean,” in Evolution of the Geological Processes in the Earth’s History (Nauka, Moscow, 1993), pp. 146–157 [in Russian].

    Google Scholar 

  15. A. V. Grishankov, Extended Abstract of Candidate Dissertation in Biology (St. Petersburg, 1995) [in Russian].

  16. M. Yu. Kolobov, I. V. Burkovskii, A. A. Udalov, and A. P. Stolyarov, “Spatial Organization and Ecological Strategy of the Populations of Priapulus caudatus and Halicryrtus spinulosus (Priapulida) under Syntopic Conditions,” Zool. Zh. 81(3), 276–284 (2002).

    Google Scholar 

  17. I. A. Lapin and V. N. Krasyukov, “Influence of Humic Acids on the Behavior of Metals in Estuarine Waters,” Okeanologiya 26(6), 621–627 (1986).

    Google Scholar 

  18. V. V. Khlebovich and G. A. Shklyarevich, “On the Origin of Nereis virens Sars in the White Sea,” Zool. Zh. 56(3), 464–467 (1977).

    Google Scholar 

  19. F. A. Shcherbakov, “On the Role of Organisms in the Mobilization of Sedimentary Matter in the Intertidal Zone of the White Sea,” Okeanologiya 28(5), 810–813 (1988).

    Google Scholar 

  20. H. Asmus and R. V. Asmus, “Trophic Relationships in Tidal Flat Areas—To What Extent Are Tidal Flats Dependent on Imported Food,” Neth. J. Sea Res. 27(1), 93–99 (1990).

    Google Scholar 

  21. F. Barlocher and S. Y. Newell, “Phenols and Proteins Affecting Palatability of Spartina Leaves to the Gastropod Littorina irrorata,” Mar. Ecol. 15(1), 65–75 (1994).

    Google Scholar 

  22. J. J. Beukema and G. C. Cadee, “Growth Rates of the Bivalve Macoma balthica in the Wadden Sea During a Period of Eutrophication Relationships with Concentration of Pelagic Diatoms and Flagellates,” Mar. Ecol. Progr. Ser. 68(3), 249–256 (1991).

    Google Scholar 

  23. I. Czekanowski, “Zur Differential Diagnose der Neander Talsruppe,” Korrespbl. Dtsch. Ges. Anthropol. 40, 44–47 (1909).

    Google Scholar 

  24. J. T. Davey and P. G. Waston, “The Activity of Nereis diversicolor (Polychaeta) and Its Impact on Nutrient Fluxes in Estuarine Waters,” Ophelia 41 (MAR), 57–70 (1995).

    Google Scholar 

  25. A. W. Decho and S. N. Luoma, “Humic and Fulvic Acids Sink or Source in the Availability of Metals to the Marine Bivalves Macoma balthica and Potamocorbula amirensis,” Mar. Ecol. Progr. Ser. 108(1–2), 133–145 (1994).

    Google Scholar 

  26. S. Dittmann, “Mussel Beds—Amensalism or Amelioration for Intertidal Fauna,” Helgolander Meeresunters 44(3–4), 335–352 (1990).

    Google Scholar 

  27. F. Gilbert, P. Bonin, and G. Stora, “Effect of Bioturbation of Denitrification in a Marine Sediment from the West Mediterranean Littoral,” Hydrobiologia 304(1), 49–58 (1995).

    Google Scholar 

  28. S. Grossman and W. Reichardt, “Impact of Arenicola Marina on Bacteria in Intertidal Sediments,” Mar. Ecol. Progr. Ser. 77(1), 85–93 (1991).

    Google Scholar 

  29. C. P. Gunter, “Settlement of Macoma balthica on an Intertidal Sandflat in the Wadden Sea,” Mar. Ecol. Progr. Ser. 76(1), 73–79 (1991).

    Google Scholar 

  30. K. Jensen Thomas, “Danish Case Study: Reference Area for Benthos,” Wadden Sea Newsletter, No. 1, 13–17 (1996).

  31. N. H. B. M. Kaag, E. M. Foekema, M. C. T. Scholten, and N. M. Vanstraaten, “Comparison of Contaminant Accumulation in 3 Species of Marine Invertebrates with Different Feeding Habits,” Environmental Toxicology and Chemistry 16(5), 837–842 (1997).

    Article  Google Scholar 

  32. P. Kamermans, “Similarity in Food Source and Timing of Feeding in Deposit-Feeding and Suspension-Feeding Bivalves,” Mar. Ecol. Progr. Ser. 104(1–2), 63–75 (1994).

    Google Scholar 

  33. E. Kristensen, M. H. Jensen, and R. C. Aller, “Direct Measurement of Dissolved Inorganic Nitrogen Exchange and Denitrification in Individual Ppolychaete,” J. Mar. Res. 49(2), 355–377 (1991).

    Google Scholar 

  34. J. Kube, C. Peters, and M. Powilleit, “Spatial Variation in Growth of Macoma balthica and Mya arenaria (Mollusca, Bivalvia) in Relation to Environmental Gradients in the Pomeranian Bay (Southern Baltic Sea),” Archive of Fishery and Marine Research 44(1–2), 81–93 (1996).

    Google Scholar 

  35. D. E. Murphy and T. A. Abrajano “Carbon-Isotope Compositions of Fatty Acids in Mussels from Newfoundland Estuaries,” Estuar. Coast. Shelf. Sci. 39(3), 261–272 (1994).

    Article  Google Scholar 

  36. A. M. Nielsen, N. T. Ericsen, J. J. L. Iversen, and H. U. Riisgard, “Feeding, Growth and Respiration in the Polychaetes Nereis diversicolor (Facultative Filter-Feeder) and N. virens (Omnivorous)—A Comparative Study,” Mar. Ecol. Progr. Ser. 125(1–3), 149–158 (1995).

    Google Scholar 

  37. V. V. Oshurcov, “Succession and Climax in Some Fouling Communities,” Biofouling No. 6, 1–12 (1992).

  38. M. Olivier, G. Desrosiers, A. Caron, et al., “Behavioral Responses of Nereis diversicolor (Muller O.F.) and Nereis virens (Sars) 1995 (Polychaeta) to Food Stimuli—Use of Specific Organic Matter (Algae and Haplophytes),” Can. J. Zool. 73(12), 2307–2317 (1995).

    Google Scholar 

  39. S. P. Pelegri and T. H. Blackbum, “Bioturbation by Nereis sp., Mya arenaria, and Cerastoderma sp. on Nitrification and Denitrification in Estuarine Sediments,” Ophelia, No. 42, 289–299 (1995).

  40. E. R. Pianka, “The Structure of Lizard Communities,” Annu. Rev. Ecol. and Syst. 4, 53–74 (1973).

    Google Scholar 

  41. W. Reichardt, “Microbes as a Challenge to Concepts of Marine Ecosystem Analysis,” Helgolander Meeresunters 49(1–4), 135–141 (1995).

    Google Scholar 

  42. H. U. Riisgard, A. Vedel, and P. S. Larsen, “Filter-Net Structure and Pumping Activity in the Polychaete Nereis diversicolor—Effects of Temperature and Pump-Modeling,” Mar. Ecol. Progr. Ser. 83(1), 79–89 (1992).

    Google Scholar 

  43. H. U. Riisgard, “Suspension Feeding in the Polychaete Nereis diversicolor,” Mar. Ecol. Progr. Ser. 70(1), 29–37 (1991).

    Google Scholar 

  44. H. U. Riisgard, I. Berntsen, and B. Tarp, “The Lugworm (Arenicola marina) Pump Characteristics, Modeling, and Energy Coast,” Mar. Ecol. Progr. Ser., No. 1–3, 149–156 (1996).

  45. M. Uchida, “Formation of Single-Cell Detritus Densely Covered with Bacteria during Experiments,” Fisheries science 62(5), 731–736 (1996).

    Google Scholar 

  46. E. L. Yakovis, “Species Composition and Spatial Structure in Subtidal Aggregation of Barnacles,” in Comparison of Enclosed and Semi-Enclosed Marine Systems. BMB-15 and ECSA-27 Symposium Abstracts (Marienhamn, 1997), p. 80.

  47. D. G. Webb, “Effect of Surface Deposit-Feeder (Macoma balthica L.) Density on Sedimentary Chlorophyll α Concentrations,” J. Exp. Mar. Biol. and Ecol. 174(1), 83–96 (1993).

    Google Scholar 

  48. S. A. Woodin and R. L. Marinelli, “Allelochemical Inhibition of Recruitment in a Sedimentary Assemblage,” J. Chem. Ecol. 19(3), 517–530 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.A. Bek, I.V. Burkovsky, A.P. Stolyarov, M.Yu. Kolobov, 2006, published in Okeanologiya, 2006, Vol. 46, No. 1, pp. 69–77.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bek, T.A., Burkovsky, I.V., Stolyarov, A.P. et al. Invertebrates in the trophic webs of the white sea near-shore ecosystem (using the example of Gryaznaya Inlet). Oceanology 46, 63–70 (2006). https://doi.org/10.1134/S0001437006010085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437006010085

Keywords

Navigation