Skip to main content
Log in

Implicit Function Theorems for Continuous Mappings and Their Applications

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Local and nonlocal implicit function theorems are obtained for closed mappings with a parameter from one Asplund space to another. These theorems are formulated in terms of the regular coderivative of a mapping at a point. The obtained results are applied to study properties of the minimum function for a constrained extremum problem with equality-type constraints and with a parameter. Sufficient conditions for the upper semicontinuity of the minimum function for a given parameter value are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Dieudonné, Foundations of Modern Analysis (Academic Press, New York, 1960).

    MATH  Google Scholar 

  2. V. A. Zorich, Mathematical Analysis. Part I (MTsNMO, Moscow, 2012) [in Russian].

    Google Scholar 

  3. V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  4. R. G. Bartle and L. M. Graves, “Mappings between function spaces,” Trans. Amer. Math. Soc. 72, 400–413 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. M. Tikhomirov, “Lusternik’s theorem about the tangent space and its modifications,” in Optim. Upravl. Matem. Vopr. Upravl. Proizvodstvom, Vol. 7, (Izd. Mosk. Univ., Moscow, 1977), pp. 22–30 [in Russian].

    Google Scholar 

  6. F. H. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983).

    MATH  Google Scholar 

  7. B. H. Pourciau, “Analysis and optimization of Lipschitz continuous mappings,” J. Optim. Theory Appl. 22 (3), 311–351 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  8. I. G. Tsar’kov, “On global existence of an implicit function,” Russian Acad. Sci. Sb. Math. 79 (2), 287–313 (1994).

    MathSciNet  Google Scholar 

  9. A. V. Arutyunov and S. E. Zhukovskiy, “Global and semilocal theorems on implicit and inverse functions in Banach spaces,” Sb. Math. 213 (1), 1–41 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  10. W. C. Rheinboldt, “Local mapping relations and global implicit function theorems,” Trans. Amer. Math. Soc. 138, 183–198 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  11. B. H. Pourciau, “Hadamard’s theorem for locally Lipschitzian maps,” J. Math. Anal. Appl. 85 (1), 279–285 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems (Springer- Verlag, New York, 2000).

    Book  MATH  Google Scholar 

  13. B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I: Basic Theory, II: Applications (Springer- Verlag, Berlin, 2006).

    Google Scholar 

  14. B. S. Mordukhovich, Variational Analysis and Applications (Springer- Verlag, Cham, 2018).

    Book  MATH  Google Scholar 

  15. R. T. Rockafellar and R. J.-B. Wets, Variational Analysis (Springer- Verlag, Berlin, 1998).

    Book  MATH  Google Scholar 

  16. B. S. Mordukhovich, “Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions,” Trans. Amer. Math. Soc. 340 (1), 1–35 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. V. Arutyunov and S. E. Zhukovskiy, “Existence and properties of inverse mappings,” Proc. Steklov Inst. Math. 271, 12–22 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. V. Arutyunov, E. R. Avakov, and S. E. Zhukovskiy, “Stability theorems for estimating the distance to a set of coincidence points,” SIAM J. Optim. 25 (2), 807–828 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. V. Arutyunov, “Stability of Coincidence Points and Properties of Covering Mappings,” Math. Notes 86 (2), 153–158 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. V. Arutyunov, “Caristi’s condition and existence of a minimum of a lower bounded function in a metric space. Applications to the theory of coincidence points,” Proc. Steklov Inst. Math. 291, 24–37 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. J. Fabian and D. Preiss, “A generalization of the interior mapping theorem of Clarke and Pourciau,” Comment. Math. Univ. Carolin. 28 (2), 311–324 (1987).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

A. V. Arutyunov was supported by the Russian Science Foundation under grant no. 20-11-20131, https://rscf.ru/en/project/20-11-20131/. S. E. Zhukovskiy was supported by the Russian Science Foundation under grant no. 22-11-00042, https://rscf.ru/en/project/22-11-00042/. B. S. Mordukhovich was supported by the US National Science Foundation under grants no. DMS-1808978 and DMS-2204519.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Zhukovskiy.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 113, pp. 793–806 https://doi.org/10.4213/mzm13518.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutyunov, A.V., Zhukovskiy, S.E. & Mordukhovich, B.S. Implicit Function Theorems for Continuous Mappings and Their Applications. Math Notes 113, 749–759 (2023). https://doi.org/10.1134/S0001434623050164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623050164

Keywords

Navigation