Skip to main content
Log in

Spectral Test for Exponential Stability

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Using the theory of commutative Banach algebras, we find an estimate of the solution of a higher-order linear differential equation; from this estimate, we derive a Lyapunov asymptotic stability test for this equation. Here the results by Faedo and Kharitonov on the Hurwitz conditions for families of polynomials find a natural application. Similar statements are obtained for a system of linear differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Hille and R. Phillips, Functional Analysis and Semi-Groups (Amer. Math. Soc., Providence, RI, 1957).

    Google Scholar 

  2. W. Rudin, Principles of Mathematical Analysis (McGraw-Hill, New York, 1973).

    MATH  Google Scholar 

  3. T. Kato, Perturbation Theory for Linear Operators (Springer- Verlag, Heidelberg, 1966).

    Book  MATH  Google Scholar 

  4. S. P. Strelkov, Introduction to Oscillation Theory (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  5. Yu. L. Daletsky and M. G. Krein, Stability of Solutions of Differential Equations in a Banach Space (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  6. A. I. Perov and I. D. Kostrub, “Differential equations in Banach algebras,” Dokl. Math. 101 (2), 139–143 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,” U. S. S. R. Comput. Math. Math. Phys. 4 (5), 1–17 (1964).

    Article  Google Scholar 

  8. I. M. Gelfand, I. A. Raikov, and G. E. Shilov, Commutative Normed Rings (Fizmatlit, Moscow, 1960) [in Russian].

    Google Scholar 

  9. A. S. Pontryagin, Ordinary Differential Equations (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  10. F. R. Gantmacher, The Theory of Matrices (Chelsea Publ. Co., New York, 1959).

    MATH  Google Scholar 

  11. S. Faedo, “Un nuovo problema di stabilita per le equazioni algebriche a coefficienti reali,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 7 (1–2), 53–63 (1953).

    MathSciNet  MATH  Google Scholar 

  12. V. L. Haritonov, “The Routh–Hurwitz problem for families of polynomials and quasipolynomials,” Mat. Fiz., No. 26, 69–79 (1979).

    MathSciNet  Google Scholar 

  13. A. I. Perov, “Conditions for invertibility and Hurwitz stability,” Funct. Anal. Appl. 51 (4), 310–315 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. I. Perov, I. D. Kostrub, O. I. Kleshchina, and E. E. Dikarev, “Absolute logarithmic norm,” Russian Math. (Iz. VUZ) 62 (4), 60–73 (2018).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The research of the first author was supported by the Russian Foundation for Basic Research under grant no. 19-01-00732.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Kostrub.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 113, pp. 489–498 https://doi.org/10.4213/mzm13710.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostrub, I.D., Perov, A.I. Spectral Test for Exponential Stability. Math Notes 113, 480–487 (2023). https://doi.org/10.1134/S0001434623030203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623030203

Keywords

Navigation