Skip to main content
Log in

Asymptotics of Solutions of Two-Term Differential Equations

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Asymptotic formulas for the fundamental solution system as \(x\to\infty\) are obtained for equations of the form

$$l(y):=(-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=\lambda y,\qquad x\in[1,\infty),$$

where \(p\) is a locally integrable function admitting the representation

$$p(x)=(1+r(x))^{-1},\qquad r\in L^1 [1,\infty),$$

and \(q\) is a distribution representable for some given \(k\), \(0\le k\le n\), as \(q=\sigma^{(k)}\), where

$$\begin{alignedat}{2} \sigma&\in L^1[1,\infty)&\qquad &\text{if }k<n, \\ |\sigma|(1+|r|)(1+|\sigma|)&\in L^1[1,\,\infty) &\qquad &\text{if }k=n. \end{alignedat}$$

Similar results are obtained for the equations \(l(y)=\lambda y\) whose coefficients \(p(x)\) and \(q(x)\) admit the following representation for a given \(k\), \(0\le k\le n\):

$$p(x)=x^{2n+\nu}(1+r(x))^{-1},\qquad q=\sigma^{(k)},\quad \sigma(x)=x^{k+\nu}(\beta+s(x)),$$

where the functions \(r\) and \(s\) satisfy certain integral decay conditions. We also obtain theorems on the deficiency indices of the minimal symmetric operator generated by the differential expression \(l(y)\) (with real functions \(p\) and \(q\)) as well as theorems on the spectra of the corresponding self-adjoint extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. A. Naimark, Linear Differential Operators (Nauka, Moscow, 1969) [in Russian].

    MATH  Google Scholar 

  2. M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems (Clarendon Press, Oxford, 1989).

    MATH  Google Scholar 

  3. Ph. Hartman, Ordinary Differential Equations (John Wiley, New York–London–Sydney, 1964).

    MATH  Google Scholar 

  4. S. A. Orlov, “On the deficiency index of linear differential operators,” Doklady Akad. Nauk SSSR (N. S.) 92 (3), 483–486 (1953).

    MathSciNet  Google Scholar 

  5. R. B. Paris and A. D. Wood, “On the \(\mathscr L_2(I)\) nature of solutions of \(n\)-th order symmetric differential operator and McLeod’s conjecture,” Proc. Roy. Soc. Edinburg Sec. A 90, 209–236 (1981).

    Article  MATH  Google Scholar 

  6. R. M. Kauffman, “On the limit-\(n\) classification of ordinary differential operators with positive coefficients,” Proc. London Math. Soc. (3) 3 (35), 496–526 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  7. R. B. Paris and A. D. Wood, Asymptotics of High Order Differential Equations, in Pitman Res. Notes in Math. Ser. (Longman Sci. & Tech., Harlow, 1986), Vol. 129.

    MATH  Google Scholar 

  8. K. A. Mirzoev, “Orlov’s theorem on the deficiency index of differential operators,” Dokl. AN 380 (5), 591–595 (2001).

    MathSciNet  MATH  Google Scholar 

  9. N. N. Konechnaja, K. A. Mirzoev, and A. A. Shkalikov, “On the asymptotic behavior of solutions to two-term differential equations with singular coefficients,” Math. Notes 104 (2), 244–252 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. N. Konechnaja and K. A. Mirzoev, “The leading term of the asymptotics of solutions of linear differential equations with first-order distribution coefficients,” Math. Notes 106 (1), 81–88 (2019).

    Article  MathSciNet  Google Scholar 

  11. K. A. Mirzoev and N. N. Konechnaja, “Asymptotics of solutions to linear differential equations of odd order,” Moscow University Mathematics Bulletin 75 (1), 22–26 (2020).

    Article  MathSciNet  Google Scholar 

  12. K. A. Mirzoev and A. A. Shkalikov, “Differential operators of even order with distribution coefficients,” Math. Notes 99 (5), 779–784 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. M. Savchuk and A. A. Shkalikov, “Sturm–Liouville operators with singular potentials,” Math. Notes 66 (6), 741–753 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. M. Savchuk and A. A. Shkalikov, “Sturm–Liouville operators with distribution potentials,” in Tr. Mosk. Mat. Obs. (Moscow, 2003), Vol. 64, pp. 159–212.

    Google Scholar 

  15. J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, “Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials,” Opuscula Math. 33, 467–563 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. K. A. Mirzoev, “Sturm–Liouville operators,” Trans. Moscow Math. Soc. 75, 281–299 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  17. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York–Toronto–London, 1955).

    MATH  Google Scholar 

  18. W. N. Everitt and L. Marcus, Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-Differential Operators (Amer. Math. Soc., Providence, RI, 1999).

    Google Scholar 

  19. N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Vishcha Shkola, Kharkov, 1978), Vol. 2 [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation under grant no. 20-11-20261.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Konechnaja.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 113, pp. 217–235 https://doi.org/10.4213/mzm13882.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konechnaja, N.N., Mirzoev, K.A. & Shkalikov, A.A. Asymptotics of Solutions of Two-Term Differential Equations. Math Notes 113, 228–242 (2023). https://doi.org/10.1134/S0001434623010261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623010261

Keywords

Navigation