Skip to main content
Log in

System of Inequalities in Continued Fractions from Finite Alphabets

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The system of two inequalities

$$\biggl|\frac yx-\psi_1\biggr|\le \varepsilon_1\qquad \text{and} \qquad \biggl\|\frac{ay}x-\psi_2\biggr\|\le \varepsilon_2$$

is considered, and an upper bound for the number of its solutions is established. Here \(a\), \(\psi_1\), \(\psi_2\), \(\varepsilon_1\), and \(\varepsilon_2\) are given real numbers, \(\varepsilon_1\) and \(\varepsilon_1\) are positive and arbitrarily small, \(\|\cdot\|\) is the distance to the nearest integer, and \(x\) and \(y\) are coprime variables from given intervals such that the partial quotients of the continued fraction expansion of \(y/x\) belong to a finite alphabet \(\mathbf{A}\subseteq\mathbb{N}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. I. D. Kan, “Linear congruences in continued fractions on finite alphabets,” Math. Notes 103 (6), 911–918 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  2. I. D. Kan and V. A. Odnorob, “Linear inhomogeneous congruences in continued fractions on finite alphabets,” Math. Notes 112 (3), 424–435 (2022).

    Article  Google Scholar 

  3. N. M. Korobov, Trigonometric Sums and Their Applications (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  4. J. Bourgain and A. Kontorovich, “On Zaremba’s conjecture,” Ann. of Math. (2) 180, 137–196 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  5. D. A. Frolenkov and I. D. Kan, A Reinforcement of the Bourgain–Kontorovich’s Theorem by Elementary Methods, arXiv: 1207.4546 (2012).

    Google Scholar 

  6. D. A. Frolenkov and I. D. Kan, A Reinforcement of the Bourgain–Kontorovich’s Theorem, arXiv: 1207.5168 (2012).

    Google Scholar 

  7. I. D. Kan and D. A. Frolenkov, “A strengthening of a theorem of Bourgain and Kontorovich,” Izv. Math. 78 (2), 293–353 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  8. D. A. Frolenkov and I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich. II,” Mosc. J. Comb. Number Theory 4 (1), 78–117 (2014).

    MathSciNet  MATH  Google Scholar 

  9. S. Huang, “An improvement on Zaremba’s conjecture,” Geom. Funct. Anal. 25 (3), 860–914 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. III,” Izv. Math. 79 (2), 288–310 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. IV,” Izv. Math. 80 (6), 1094–1117 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. V,” Proc. Steklov Inst. Math. 296 (1), 125–131 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  13. I. D. Kan, “Is Zaremba’s conjecture true?,” Sb. Math. 210 (3), 364–416 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  14. I. D. Kan, “A strengthening of the Bourgain–Kontorovich method: three new theorems,” Sb. Math. 212 (7), 921–964 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  15. I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich,” Dal’nevost. Mat. Zh. 20 (2), 164–190 (2020).

    MathSciNet  MATH  Google Scholar 

  16. I. D. Kan, “Strengthening of the Burgein–Kontorovich theorem on small values of Hausdorff dimension,” Funct. Anal. Appl. 56 (1), 48–60 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Hensley, “The Hausdorff dimensions of some continued fraction Cantor sets,” J. Number Theory 33 (2), 182–198 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Graham, D. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science (Addison-Wesley, Reading, MA, 1994).

    MATH  Google Scholar 

  19. A. Ya. Khinchine, Continued Fractions (GIFML, Moscow, 1960) [in Russian].

    Google Scholar 

  20. Yu. V. Nesterenko, Number Theory (Akademiya, Moscow, 2008) [in Russian].

    MATH  Google Scholar 

  21. D. Hensley, “The distribution of badly approximable numbers and continuants with bounded digits,” in Théorie des nombres (de Gruyter, Berlin, 1989), pp. 371–385.

    Google Scholar 

  22. D. Hensley, “A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets,” J. Number Theory 58 (1), 9–45 (1996).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Kan.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 113, pp. 197–206 https://doi.org/10.4213/mzm13580.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, I.D., Solovyov, G.K. System of Inequalities in Continued Fractions from Finite Alphabets. Math Notes 113, 212–219 (2023). https://doi.org/10.1134/S0001434623010248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623010248

Keywords

Navigation