Skip to main content
Log in

On the Homogeneity of Products of Topological Spaces

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Three intermediate classes \(\mathscr R_1\subset\mathscr R_2\subset\mathscr R_3\) between the classes of \(F\)-spaces and of \(\beta\omega\)-spaces are considered. It is proved that products of infinite \(\mathscr R_2\)-spaces and, under the assumption of the existence of a discrete ultrafilter, of infinite \(\beta\omega\)-spaces are never homogeneous. Under additional set-theoretic assumptions, the metrizability of any compact subspace of a countable product of homogeneous \(\beta\omega\)-spaces is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. W. Rudin, “Homogeneity problems in the theory of Čech compactifications,” Duke Math. J. 23 (3), 409–419 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Gillman and M. Henriksen, “Concerning rings of continuous functions,” Trans. Amer. Math. Soc. 77, 340–362.

    Article  MathSciNet  MATH  Google Scholar 

  3. Z. Frolík, “Sums of ultrafilters,” Bull. Amer. Math. Soc. 73, 87–91 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. T. Johnstone, Stone Spaces (Cambridge Univ. Press, Cambridge, 1982).

    MATH  Google Scholar 

  5. Z. Frolík, “Homogeneity problems for extremally disconnected spaces,” Comment. Math. Univ. Carol. 8 (4), 757–763 (1967).

    MathSciNet  MATH  Google Scholar 

  6. A. Arhangelskii, “Groupes topologiques extrémalement discontinus,” C. R. Acad. Sci. Paris 265, 822–825 (1967).

    MathSciNet  MATH  Google Scholar 

  7. E. K. van Douwen, “Homogeneity of \(\beta G\) if \(G\) is a topological group,” Collect. Math. 41, 193–199 (1979).

    MathSciNet  MATH  Google Scholar 

  8. E. Reznichenko, “Homogeneous subspaces of products of extremally disconnected spaces,” Topology Appl. 284, 107403 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. M. Gleason, “Projective topological spaces,” Illinois J. Math. 2, 482–489 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. I. Ponomarev, “On the absolute of a topological space,” Dokl. Akad. Nauk SSSR 149 (1), 26–29 (1963).

    MathSciNet  Google Scholar 

  11. L. Gillman and M. Jerison, Rings of Continuous Functions (Springer, New York, 1960).

    Book  MATH  Google Scholar 

  12. K. Kunen, “Large homogeneous compact spaces,” in Open Problems in Topology (North-Holland, Amsterdam, 1990), pp. 262–270.

    Google Scholar 

  13. E. K. van Douwen, Prime Mappings, Number of Factors and Binary Operations, in Dissertationes Math. (PWN, Warszawa, 1981), Vol. 119.

    MATH  Google Scholar 

  14. W. W. Comfort, “Ultrafilters: Some old and some new results,” Bull. Amer. Math. Soc. 83, 417–455 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Husek, “Continuous mappings on subspaces of products,” in Symposia Mathematica (Academic Press, London, 1976), Vol. 17, pp. 25–41.

    Google Scholar 

  16. A. Yu. Groznova and O. V. Sipacheva, “The new property of topological spaces, generalizing extremal disconnectedness,” Vestnik Moskov. Univ. Ser. I Mat. Mekh. (2023) (in press).

    Google Scholar 

  17. J. E. Baumgartner, “Ultrafilters on \(\omega\),” J. Symb. Logic 60, 624–639 (1995).

    Article  MATH  Google Scholar 

  18. A. Yu. Groznova and O. V. Sipacheva, Discrete ultrafilters and homogeneity of product spaces, arXiv: 2205.11978 (2022).

    Book  Google Scholar 

  19. R. Engelking, General topology (Heldermann-Verlag, Berlin, 1989).

    MATH  Google Scholar 

  20. K. Kunen, “Weak \(P\)-points in \(N^*\),” in Topology, Coll. Math. Soc. János Bolyai. (North-Holland, Amsterdam, 1980), Vol. 23, pp. 741–749.

    Google Scholar 

  21. V. I Malykhin, “\(\beta\mathbb N\) is prime,” Bull. Acad. Polon. Sci. Sér. Math. 27, 295–297 (1978).

    Google Scholar 

  22. A. Blass, “The Rudin–Keisler ordering of \(P\)-points,” Trans. Amer. Math. Soc. 179, 145–166 (1973).

    MathSciNet  MATH  Google Scholar 

  23. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, in Grundlehren Math. Wiss. (Springer, Berlin, 1974), Vol. 211.

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The author expresses deep gratitude to her scientific advisor Ol’ga Viktorovna Sipacheva for setting the problem, many useful discussions, and patience, to Evgenii Aleksandrovich Reznichenko for stimulating discussions, and to the referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Groznova.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 113, pp. 171–181 https://doi.org/10.4213/mzm13634.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groznova, A.Y. On the Homogeneity of Products of Topological Spaces. Math Notes 113, 182–190 (2023). https://doi.org/10.1134/S0001434623010212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623010212

Keywords

Navigation