Skip to main content
Log in

Infinitely Many Solutions for a Class of Kirchhoff Problems Involving the \(p(x)\)-Laplacian Operator

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

This article is devoted to studying a class of generalized \(p(x)\)-Laplacian Kirchhoff equations in the following form:

$$\begin{aligned} \, \begin{cases} -M\biggl(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}\biggr)\operatorname{div} \biggl(|\nabla u|^{p(x)-2}\nabla u\biggr)=\lambda |u|^{r(x)-2}u +f(x,u) &\text{in }\Omega, \\ u=0 &\text{on }\partial\Omega, \end{cases} \end{aligned}$$

where \(\Omega\) is a bounded domain of \(\mathbb{R}^N (N\geq 2)\) with smooth boundary \(\partial\Omega\), \(\lambda>0\), and \(p\) and \(r\), are two continuous functions in \(\overline{\Omega}\). Using variational methods combined with some properties of the generalized Sobolev spaces, under appropriate assumptions on \(f\) and \(M\), we obtain a number of results on the existence of solutions. In addition, we show the existence of infinitely many solutions in the case when \(f\) satisfies the evenness condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. Acerbi and G. Mingione, “Regularity results for a class of functionals with nonstandard growth,” Arch. Rational Mech. Anal. 156, 121–140 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Diening, Theoretical and numerical results for electrorheological fluids (Ph. D. thesis, University of Freiburg, Germany, 2002).

    MATH  Google Scholar 

  3. G. Kirchhoff, “Mechanik,” Teubner, Leipzig (1883).

    Google Scholar 

  4. J. L. Lions, “On some questions in boundary value problems of mathematical physics,” North- Holland Math. Stud., No. 30, 284–346 (1978).

    Article  MathSciNet  Google Scholar 

  5. A. Bensedik and M. Bouchekif, “On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity,” Math. Comput. Modelling, No. 49, 1089–1096 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Arosio and S. Panizzi, “On the well-posedness of the Kirchhoff string,” Trans. Amer. Math. Soc., No. 348, 305–330 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Cheng, X. Wu, and J. Liu, “Multiplicity of nontrivial solutions for Kirchhoff type problems,” Boundary Value Problems., Article ID 268946, 13 pages (2010).

    MathSciNet  MATH  Google Scholar 

  8. F. J. S. A. Corrêa and G. M. Figueiredo, “On a \(p\)-Kirchhoff equation via Krasnoselskii’s genus,” Appl. Math. Letters, No. 22, 819–822 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Ourraoui, “On a \(p\)-Kirchhoff problem involving a critical nonlinearity,” C. R. Acad. Sci. Paris, Ser. I, No. 352, 295–298 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Ben Ali, A. Ghanmi, and K. Kefi, “Minimax method involving singular \(p(x)\)-Kirchhoff equation,” J. Math. Phys., No. 58, 111505; https://doi.org/10.1063/1.5010798 (2017).

    MathSciNet  MATH  Google Scholar 

  11. N. T. Chung, “Multiplicity results for a class of \(p(x)\)-Kirchhoff type equations with combined nonlinearities,” Electron. J. Qual. Theory Differ. Equ., No. 42, 1–13 (2012).

    Article  MathSciNet  Google Scholar 

  12. G. Dai and R. Hao, “Existence of solutions for a \(p(x)\)-Kirchhoff-type equation,” J. Math. Anal. Appl., No. 359, 275–284 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Ghanmi, “Nontrivial solutions for Kirchhoff-type problems involving the \(p(x)\)-Laplace operator,” Rocky Mountain J. Math. 4 (48), 1145–1158 (2018).

    MathSciNet  MATH  Google Scholar 

  14. G. Dai and R. Hao, “Existence of solutions for a \(p(x)\)-Kirchhoff-type equation,” J. Math. Anal. Appl. 1 (359), 275–284 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Dai and R. Ma, “Existence of solutions for a \(p(x)\)-Kirchhoff-type equation with Neumann boundary data,” Nonlinear Anal., No. 12, 2666–2680 (2011).

    Article  MATH  Google Scholar 

  16. G. Dai and D. Liu, “Infinitely many positive solutions for a \(p(x)\)-Kirchhoff-type equation,” J. Math. Anal. Appl., No. 359, 704–710 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. E. Edmunds and J. Rákosník, “Density of smooth functions in \(W^{k,p(x)}(\Omega)\),” Proc. R. Soc. A., No. 437, 229-236 (1992).

    MATH  Google Scholar 

  18. D. E. Edmunds and J. Rákosník, “Sobolev embedding with variable exponent,” Studia Math., No. 143, 267–293 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  19. X. L. Fan, J. S. Shen, and D. Zhao, “Sobolev embedding theorems for spaces \(W^{k,p(x)}(\Omega)\),” J. Math. Anal. Appl., No. 262, 749–760 (2001).

    Article  MATH  Google Scholar 

  20. X. L. Fan and D. Zhao, “On the spaces \(L^{p(x)}\) and \(W^{m,p(x)}\),” J. Math. Anal. Appl., No. 263, 424–446 (2001).

    Article  MATH  Google Scholar 

  21. O. Kováčik and J. Rákosník, “On the spaces \(L^{p(x)}(\Omega)\) and \(W^{1,p(x)}(\Omega)\),” Czechoslovak Math. J., No. 41, 592–618 (1991).

    Article  MATH  Google Scholar 

  22. X. L. Fan and Q. H. Zhang, “Existence of solutions for \(p(x)\)-Laplacian Dirichlet problems,” Nonlinear Anal., No. 52, 1843–1852 (2003).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghanmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanmi, A., Mbarki, L. & Saoudi, K. Infinitely Many Solutions for a Class of Kirchhoff Problems Involving the \(p(x)\)-Laplacian Operator. Math Notes 113, 172–181 (2023). https://doi.org/10.1134/S0001434623010200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623010200

Keywords

Navigation