Skip to main content
Log in

Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We study the Sobolev space well-posedness of inverse problems of determining the heat transfer coefficient contained in a Robin-type boundary condition for the convection-diffusion equations. We prove an existence and uniqueness theorem for the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. O. M. Alifanov, Inverse Problems in the Study of Complex Heat Exchange (Yanus-K, Moscow, 2009) [in Russian].

    Google Scholar 

  2. V. N. Tkachenko, Mathematical Modeling, Identification, and Control of Technological Processes of Heat Treatment of Materials (Naukova Dumka, Kiev, 2008) [in Russian].

    Google Scholar 

  3. M. V. Glagolev and A. F. Sabrekov, “Determination of gas exchange on the border between ecosystem and atmosphere: inverse modeling,” Mat. Biolog. Bioinform. 7 (11), 81–101 (2012).

    Article  Google Scholar 

  4. A. I. Borodulin, B. D. Desyatkov, G. A. Makhov and S. R. Sarmanaev, “Determination of marsh methane emission from measured values of its concentration in the surface layer of the atmosphere,” Meteorologiya i Gidrologiya, No. 1, 66–74 (1997).

    Google Scholar 

  5. L. V. Dantas, H. R. B. Orlande, and R. M. Cotta, “An inverse problem of parameter estimation for heat and mass transfer in capillary porous media,” Int. J. Heat and Mass Transfer 46 (9), 1587–1599 (2003).

    Article  MATH  Google Scholar 

  6. J. Jr. Lugon and A. J. S. Neto, “An inverse problem of parameter estimation in simultaneous heat and mass transfer in a one-dimensional porous medium,” in Proceedings of COBEM 2003. 17-th International Congress on Mechanical Engineering (ABCM, San-Paolo, 2003); https:// abcm.org.br/ anais/ cobem/ 2003/ html/ pdf/ COB03-1158.pdf

    Google Scholar 

  7. K. Cao, D. Lesnic and M. J. Colaco, “Determination of thermal conductivity of inhomogeneous orthotropic materials from temperature measurements,” Inverse Probl. Sci. Eng. 27 (10), 1372–1398 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. A. B. Varan, H. R. B. Orlande, and F. L. V. Vianna, “Estimation of the convective heat transfer coefficient in pipelines with the Markov chain Monte-Carlo method,” Blucher Mech. Eng. Proc. 1 (1), 1214–1225 (2014).

    Google Scholar 

  9. A. M. Osman and J. V. Beck, “Nonlinear inverse problem for the estimation of time-and-space-dependent heat-transfer coefficients,” J. Thermophysics 3 (2), 146–152 (2003).

    Google Scholar 

  10. M. J. Colac and H. R. B. Orlande, “Inverse natural convection problem of simultaneous estimation of two boundary heat fluxes in irregular cavities,” Int. J. Heat and Mass Transfer 47 (6), 1201–1215 (2004).

    Article  MATH  Google Scholar 

  11. F. Avallone, C. S. Greco, and D. Ekelschot, “2D-Inverse heat transfer measurements by IR thermography in hypersonic flows,” in Proceedings of the 11th International Conference on Quantitative InfraRed Thermography (Naples, 2012), pp. 1–13.

    Google Scholar 

  12. S. D. Farahani, F. Kowsary, and M. Ashjaee, “Experimental estimation of heat flux and heat transfer coefficient by using inverse methods,” Sci. Iranica B 3 (4), 1777–1786 (2016).

    Article  Google Scholar 

  13. J. Su and G. F. Hewitt, “Inverse heat conduction problem of estimating time-varying heat transfer coefficient,” Numer. Heat Transfer A 45, 777–789 (2004).

    Article  Google Scholar 

  14. D. N. Hao, R. X. Thanh, and D. Lesnic, “Determination of the heat transfer coefficients in transient heat conduction,” Inverse Problems 29 (9), 095020 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. D. Lee, I. Tanabe, and K. Takada, “Identification of the heat transfer coefficient on machine tool surface by inverse analysis,” JSME Int. J. Ser. C 42 (4), 1056–1060 (1999).

    Article  Google Scholar 

  16. T. M. Onyango, D. B. Ingham, and D. Lesnic, “Restoring boundary conditions in heat conduction,” J. Eng. Math. 62 (1), 85–101 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Wang, L. Zhang, X. Sun, and H. Jial, “Solution to two-dimensional steady inverse heat transfer problems with interior heat source based on the conjugate gradient method,” Math. Probl. Eng. 2017, 2861342 (2017).

    MathSciNet  MATH  Google Scholar 

  18. J. Sladek, V. Sladek, P. H. Wen, and Y. C. Hon, “The inverse problem of determining heat transfer coefficients by the meshless local Petrov–Galerkin method,” CMES Comput. Model. Eng. Sci. 48 (2), 191–218 (2009).

    MathSciNet  MATH  Google Scholar 

  19. B. Jin and X. Lu, “Numerical identification of a Robin coefficient in parabolic problems,” Math. Comp. 81 (279), 1369–1398 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  20. W. B. Da Silva, J. C. S. Dutra, C. E. P. Kopperschimidt, D. Lesnic, and R. G. Aykroyd, “Sequential particle filter estimation of a time-dependent heat transfer coefficient in a multidimensional nonlinear inverse heat conduction problem,” Appl. Math. Model. 89 (1), 654–668 (2012).

    MathSciNet  MATH  Google Scholar 

  21. D. N. Hao, B. V. Huong, P. X. Thanh, and D. Lesnic, “Identification of nonlinear heat transfer laws from boundary observations,” Appl. Anal. 94 (9), 1784–1799 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Slodicka and R. Van Keer, “Determination of a Robin coefficient in semilinear parabolic problems by means of boundary measurements,” Inverse Problems 18 (1), 139–152 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Rösch, “Stability estimates for the identification of nonlinear heat transfer laws,” Inverse Problems 12 (5), 743–756 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Knupp and L. A S. Abreu, “Explicit boundary heat flux reconstruction employing temperature measurements regularized via truncated eigenfunction expansions,” Int. Commun. in Heat and Mass Transfer 78, 241–252 (2016).

    Article  Google Scholar 

  25. S. A. Kolesnik, V. F. Formalev, and E. L. Kuznetsova, “On inverse boundary thermal conductivity problem of recovery of heat fluxes to the boundaries of anisotropic bodies,” High Temperature 53 (1), 68–72 (2015).

    Article  Google Scholar 

  26. A. S. A. Alghamdi, “Inverse Estimation of Boundary Heat Flux for Heat Conduction Model,” JKAU. Eng. Sci. 21 (1), 73–95 (2010).

    Article  Google Scholar 

  27. A. B. Kostin and A. I. Prilepko, “Some problems of reconstruction of a boundary condition for a parabolic equation. II,” Differ. Equations 32 (11), 1515–1525 (1996).

    MathSciNet  MATH  Google Scholar 

  28. A. B. Kostin and A. I. Prilepko, “Some problems of reconstruction of a boundary condition for a parabolic equation. I,” Differ. Equations 32 (1), 113–122 (1996).

    MathSciNet  MATH  Google Scholar 

  29. R. Denk, M. Huber, and J. Prüss, “Optimal \(L_p\)\(L_q\)-estimates for parabolic boundary value problems with inhomogeneous data,” Math. Z. 257, 193–224 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (North-Holland, Amsterdam, 1978).

    MATH  Google Scholar 

  31. H. Amann, “Compact embeddings of vector-valued Sobolev and Besov spaces,” Glas. Mat. Ser. III 35 (1), 161–177 (2000).

    MathSciNet  MATH  Google Scholar 

  32. O. A. Ladyzhenskaya, N. N. Ural’tseva, and V. A. Solonnikov, Linear and Quasilinear Equations of Parabolic Type (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

  33. V. A. Belonogov and S. G. Pyatkov, “On solvability of conjugation problems with non-ideal contact conditions,” Russian Math. (Iz. VUZ) 64 (7), 13–26 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  34. V. P. Mikhailov, Partial Differential Equations (Nauka, Moscow, 1976) [in Russian].

    MATH  Google Scholar 

  35. M. A. Verzhbitskii and S. G. Pyatkov, “Some inverse problems of determining the boundary regimes,” Matem. Zametki SVFU 23 (2), 3–18 (2016).

    MATH  Google Scholar 

  36. S. M. Nikol’skii, Approximation of Functions of Many Variables and Embedding Theorems (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  37. P. Grisvard, “Équations différentielles abstraites,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (3), 311–395 (1969).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation and the Government of the Khanty-Mansiysk Autonomous Okrug—YUGRA under grant no. 22-11-20031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Pyatkov.

Additional information

Translated from Matematicheskie Zametki, 2023, Vol. 113, pp. 90–108 https://doi.org/10.4213/mzm13573.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyatkov, S.G., Baranchuk, V.A. Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer. Math Notes 113, 93–108 (2023). https://doi.org/10.1134/S0001434623010108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434623010108

Keywords

Navigation