Skip to main content
Log in

Solution Blow-Up for a Fractional Fourth-Order Equation of Moore–Gibson–Thompson Type with Nonlinearity Nonlocal in Time

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We reformulate the fourth-order equation of the Moore–Gibson–Thompson (MGT) type to a fractional semilinear fourth-order equation with structural damping and a time-nonlocal nonlinearity. The solution blow-up for this problem is established by the test function method. First, we recall some definitions and elementary properties of the fractional derivatives, and then we study the absence of global weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. L. Bagley and P. J. Torvik, “A theoretical basis for the application of fractional calculus to viscoelasticity,” J. Rheol. 27 (3), 201–210 (1998).

    Article  MATH  Google Scholar 

  2. L. Beghin and E. Orsingher, “The telegraph process stopped at stable-distributed times and its connection with the fractional telegraph equation,” Fract. Calc. Appl. Anal. 6 (2), 187–204 (2003).

    MathSciNet  MATH  Google Scholar 

  3. S. Boulaaras, R. Jan, A. Khan and M. Ahsan, “Dynamical analysis of the transmission of dengue fever via Caputo–Fabrizio fractional derivative,” Chaos, Solitons & Fractals: X 8, p. 100072 (2022).

    Article  Google Scholar 

  4. J. Blackledge, “Application of the fractional diffusion equation for predicting market behavior,” IAENG International Journal of Applied Mathematics 40 (3), 130–158 (2010).

    MathSciNet  MATH  Google Scholar 

  5. R. C. Cascaval, E. C. Eckstein, C. L. Frota, and J. A. Goldstein, “Fractional telegraph equations,” J. Math. Appl. 276 (1), 145–159 (2002).

    MathSciNet  MATH  Google Scholar 

  6. R. A. Fisher, “The advantageous genes,” Ann. of Eugenics 7 (1), 355–369 (1937).

    Article  MATH  Google Scholar 

  7. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, North-Holland Mathematics Studies, 2006).

    MATH  Google Scholar 

  8. M. Kirane and N. Tatar, “Nonexistence of solutions to a hyperbolic equation with a time fractional damping,” J. Anal. Appl. 25 (2), 131–142 (2006).

    MathSciNet  MATH  Google Scholar 

  9. V. Lakshmikantham and A. S. Vatsala, “Basic theory of fractional differential equations,” Nonlinear Analysis: Theory, Methods & Applications 69 (8), 2677–2682 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Lakshmikantham and A. S. Vatsala, “Theory of fractional differential inequalities and applications,” Commun. Appl. Anal. 11 (3-4), 395–402 (2007).

    MathSciNet  MATH  Google Scholar 

  11. V. Lakshmikantham and A. S. Vatsala, “General uniqueness and monotone iterative technique for fractional differential equations,” Appl. Math. Lett. 21 (8), 828–834 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. D’Abbicco, M. R. Ebert, and T. Picon, “Global existence of small data solutions to the semilinear fractional wave equation,” New Trends in Analysis and Interdisciplinary Applications, 465–471 (2017).

    MathSciNet  MATH  Google Scholar 

  13. K. Bouguetof, “Blowing-up solutions of a time-space fractional semi-linear equation with a structural damping and a nonlocal in time nonlinearity, arXiv:2002.09704v1,”.

    Google Scholar 

  14. F. Dell’Oro and P. Vittorino, “On a fourth-order equation of Moore–Gibson–Thompson type,” Milan J. Math. 85 (2), 215–234 (2017).

    MathSciNet  MATH  Google Scholar 

  15. A. H. Caixeta, I. Lasiecka, and V. N. Domingos Cavalcanti, “On long time behavior of Moore– Gibson– Thompson equation with molecular relaxation,” Evol. Equ. Control Theory 5 (4), 661–676 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Kaltenbacher, I. Lasiecka, and R. Marchand, “Wellposedness and exponential decay rates for the Moore– Gibson–Thompson equation arising in high intensity ultrasound,” Control Cybernet. 40 (4), 971–988 (2011).

    MathSciNet  MATH  Google Scholar 

  17. I. Lasiecka and X. Wang, “Moore–Gibson–Thompson equation with memory, part I: Exponential decay of energy,” Z. Angew. Math. Phys. 67 (2), 1–23 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. I. Lasiecka and X. Wang, “Moore–Gibson–Thompson equation with memory, part II: General decay of energy,” J. Differential Equations 259 (12), 7610–7635 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. F. K. Moore and W. E. Gibson, “Propagation of weak disturbances in a gas subject to relaxation effects,” J. Aero/Space Sci. 27 (2), 117–127 (1960).

    Article  MATH  Google Scholar 

  20. I. Podlubny, Fractional Differential Equations (Springer, New York/London, 1999.), Vol. 198.

    MATH  Google Scholar 

  21. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publishers, Amsterdam, 1993).

    MATH  Google Scholar 

  22. Z. Yong, W. Jinrong, and Z. Lu, Basic Theory of Fractional Differential Equations (World Scientific, Singapore 2016).

    MATH  Google Scholar 

  23. M. Bonforte and J. L. V ázquez, “Quantitative local and global a priori estimates for fractional nonlinear diffusion equations,” Adv. Math. 250, 242–284 (2014).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees for careful reading and important observations and suggestions for improving the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mesloub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesloub, F., Merah, A. & Boulaaras, S. Solution Blow-Up for a Fractional Fourth-Order Equation of Moore–Gibson–Thompson Type with Nonlinearity Nonlocal in Time. Math Notes 113, 72–79 (2023). https://doi.org/10.1134/S000143462301008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143462301008X

Keywords

Navigation