Skip to main content
Log in

Pell and Pell–Lucas Numbers as Product of Two Repdigits

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this study, we find all Pell and Pell–Lucas numbers that are product of two repdigits in the base \(b\) for \(b\in[2,10]\). It is shown that the largest Pell and Pell–Lucas numbers that can be expressed as a product of two repdigits are \(P_{7}=169\) and \(Q_{6}=198\), respectively. Also, we have the representations

$$P_{7}=169=(111)_{3}\times(111)_{3}$$

and

$$Q_{6}=198=2\times99=3\times66=6\times33=9\times22.$$

Furthermore, it is shown in the paper that the equation \(P_{k}=(b^{n}-1)(b^{m}-1)\) has only the solution \((b,k,m,n)=(2,1,1,1)\) and the equation \(Q_{k}=(b^{n}-1)(b^{m}-1)\) has no solution \((b,k,m,n)\) in positive integers for \(2\leq\) \(b\leq10\). The proofs depend on lower bounds for linear forms and some tools from Diophantine approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Faye and F. Luca, “Pell and Pell–Lucas numbers with only one distinct digit,” Ann. Math. Inform. 45, 55–60 (2015).

    MathSciNet  MATH  Google Scholar 

  2. C. Adegbindin, F. Luca, and A. Togbé, “Pell and Pell–Lucas numbers as sums of two repdigits,” Bull. Malays. Math. Sci. Soc. 43 (2), 1253–1271 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Erduvan and R. Keskin, “Fibonacci and Lucas numbers as products of two repdigits,” Turkish Journal of Mathematics 43, 2142–2153 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Erduvan, R. Keskin, and Z. Şiar, “Repdigits base b as products of two Pell numbers or Pell–Lucas numbers,” Boletín de la Sociedad Matemática Mexicana 27 (3), 1–17 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  5. E. M. Matveev, “An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II,” Izv. Math. 64 (6), 1217–1269 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Bugeaud, M. Mignotte, and S. Siksek, “Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers,” Ann. of Math. 163 (3), 969–1018 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. J. Bravo, C. A. Gomez, and F. Luca, “Powers of two as sums of two \(k\)-Fibonacci numbers,” Miskolc Math. Notes 17 (1), 85–100 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Dujella and A. Pethò, “A generalization of a theorem of Baker and Davenport,” Quart. J. Math. Oxford Ser. (2) 49 (3), 291–306 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Baker and H. Davenport, “The equations \(3x^{2}-2=y^{2}\) and \(8x^{2}-7=z^{2}\),” Quart. J. Math. Oxford Ser. (2) 20 (1), 129–137 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  10. B. M. M. de Weger, Algorithms for Diophantine Equations (Centrum voor Wiskunde en Informatica, Amsterdam, 1989).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Erduvan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erduvan, F., Keskin, R. Pell and Pell–Lucas Numbers as Product of Two Repdigits. Math Notes 112, 861–871 (2022). https://doi.org/10.1134/S0001434622110207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622110207

Keywords

Navigation