Skip to main content
Log in

Eta-Invariants for Parameter-Dependent Operators Associated with an Action of a Discrete Group

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

\(\eta\)-invariants for a class of parameter-dependent nonlocal operators associated with an isometric action of a discrete group of polynomial growth on a smooth closed manifold are studied. The \(\eta\)-invariant is defined as the regularization of the winding number. The formula for the variation of the \(\eta\)-invariant when the operator changes is obtained. The results are based on the study of asymptotic expansions of traces of parameter-dependent nonlocal operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Atiyah, V. Patodi, and I. Singer, “Spectral asymmetry and Riemannian geometry. I,” Math. Proc. Cambridge Philos. Soc. 77, 43–69 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Cheeger, “\(\eta\)-invariants, the adiabatic approximation and conical singularities,” J. Differential Geom. 26, 175–221 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Müller, “Eta-invariants and manifolds with boundary,” J. Differential Geom. 40, 311–377 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  4. J.-M. Bismut and J. Cheeger, “\(\eta\)-invariants and their adiabatic limits,” J. Amer. Math. Soc. 2 (1), 33–70 (1989).

    MathSciNet  MATH  Google Scholar 

  5. X. Dai, “Adiabatic limits, non-multiplicativity of signature and the Leray spectral sequence,” J. Amer. Math. Soc. 4, 265–321 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Donnelly, “Eta-invariants for \({G}\)-spaces,” Indiana Univ. Math. J. 27, 889–918 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Farsi, “Orbifold \(\eta\)-invariants,” Indiana Univ. Math. J. 56 (2), 501–521 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Melrose, “The eta invariant and families of pseudodifferential operators,” Math. Res. Lett. 2 (5), 541–561 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. S. Agranovich and M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type,” Russian Math. Surveys 19 (3), 53–157 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. A. Shubin, Pseudodifferential Operators and Spectral Theory (Springer- Verlag, Berlin, 2001).

    Book  MATH  Google Scholar 

  11. M. Wodzicki, “Noncommutative residue. I. Fundamentals,” in \(K\)-Theory, Arithmetic and Geometry, Lect. Notes in Math. (Springer, Berlin, 1987), Vol. 1289, pp. 320–399.

    Chapter  Google Scholar 

  12. B. Fedosov, B.-W. Schulze, and N. Tarkhanov, “The index of elliptic operators on manifolds with conical points,” Selecta Math. (N. S.) 5 (4), 467–506 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. V. Fedosov, B.-W. Schulze, and N. Tarkhanov, “The index of higher order operators on singular surfaces,” Pacific J. Math. 191 (1), 25–48 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Fedosov, B.-W. Schulze, and N. Tarkhanov, “A general index formula on toric manifolds with conical points,” in Approaches to Singular Analysis, Oper. Theory Adv. Appl. (Birkhäuser, Basel, 2001), Vol. 125, pp. 234–256.

    Chapter  Google Scholar 

  15. A. Connes, Noncommutative Geometry (Academic Press, San Diego, CA, 1994).

    MATH  Google Scholar 

  16. A. Antonevich and A. Lebedev, Functional-Differential Equations. I. \(C^*\)-Theory (Longman, Harlow, 1994).

    MATH  Google Scholar 

  17. A. B. Antonevich and A. V. Lebedev, “Functional equations and functional operator equations. A \(C^\ast\)-algebraic approach,” in Proceedings of the St. Petersburg Mathematical Society, Amer. Math. Soc. Transl. Ser. 2 (Providence, RI, 2000), Vol. 199, pp. 25–116.

    Google Scholar 

  18. A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications (Birkhäuser, Basel, Boston, Berlin, 1997).

    MATH  Google Scholar 

  19. V. E. Nazaikinskii, A. Yu. Savin, and B. Yu. Sternin, Elliptic Theory and Noncommutative Geometry (Birkhäuser, Basel, 2008).

    MATH  Google Scholar 

  20. A. Yu. Savin and B. Yu. Sternin, “Elliptic \(G\)-operators on manifolds with isolated singularities,” J. Math. Sci. 233, 930–948 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. L. Skubachevskii, “Nonlocal elliptic problems in infinite cylinder and applications,” Discrete Contin. Dyn. Syst. Ser. S 9 (3), 847–868 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  22. K. N. Zhuikov and A. Yu. Savin, “Eta-invariant for parameter-dependent families with periodic coefficients,” Ufa Math. J. 14 (2), 35–55 (2022).

    MathSciNet  MATH  Google Scholar 

  23. D. Perrot, “Local index theory for operators associated with Lie groupoid actions,” J. Topol. Anal. 14 (2), 297–341 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  24. V. P. Maslov and M. V. Fedoryuk, Semi-Classical Approximation in Quantum Mechanics (D. Reidel Publishing Company, Dordrecht-Boston-London, 1981).

    Book  MATH  Google Scholar 

  25. M. Gromov, “Groups of polynomial growth and expanding maps,” Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  26. Yu. Egorov and B.-W. Schulze, Pseudo-Differential Operators, Singularities, Applications (Birkhäuser, Boston, 1997).

    Book  MATH  Google Scholar 

  27. M. Lesch and M. Pflaum, “Traces on algebras of parameter dependent pseudodifferential operators and the eta-invariant,” Trans. Amer. Math. Soc. 352 (11), 4911–4936 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  28. L. B. Schweitzer, “Spectral invariance of dense subalgebras of operator algebras,” Internat. J. Math. 4 (2), 289–317 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Zworski, Semiclassical Analysis, in Grad. Stud. Math. (Amer. Math. Soc., Providence, RI, 2012), Vol. 138.

    MATH  Google Scholar 

Download references

Funding

The work was supported in part by Young Russian Mathematics award as well as by RFBR and DFG, project number 21-51-12006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Zhuikov.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 112, pp. 705–717 https://doi.org/10.4213/mzm13778.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuikov, K.N., Savin, A.Y. Eta-Invariants for Parameter-Dependent Operators Associated with an Action of a Discrete Group. Math Notes 112, 685–696 (2022). https://doi.org/10.1134/S0001434622110062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622110062

Keywords

Navigation