Skip to main content
Log in

Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra \(\operatorname{su}(1,1)\)

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of constructing semiclassical asymptotics for the tunnel splitting of the spectrum of an operator defined on an irreducible representation of the Lie algebra \(\operatorname{su}(1,1)\). It is assumed that the operator is a quadratic function of the generators of the algebra. We present coherent states and a unitary coherent transform that allow us to reduce the problem to the analysis of a second-order differential operator in the space of holomorphic functions. Semiclassical asymptotic spectral series and the corresponding wave functions are constructed as decompositions in coherent states. For some values of the system parameters, the minimal energy corresponds to a pair of nondegenerate equilibria, and the discrete spectrum of the operator has an exponentially small tunnel splitting of the levels. We apply the complex WKB method to prove asymptotic formulas for the tunnel splitting of the energies. We also show that, in contrast to the one-dimensional Schrödinger operator, the tunnel splitting in this problem not only decays exponentially but also contains an oscillating factor, which can be interpreted as tunneling interference between distinct instantons. We also show that, for some parameter values, the tunneling is completely suppressed and some of the spectral levels are doubly degenerate, which is not typical of one-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. P. Woit, Quantum Theory, Groups and Representations. An Introduction (Springer, Cham, 2017).

    Book  MATH  Google Scholar 

  2. M. V. Karasev and V. P. Maslov, Translation of Mathematical Monographs, Vol. 119: Nonlinear Poisson Brackets. Geometry and Quantization (Amer. Math. Soc., Providence, RI, 1993).

    Google Scholar 

  3. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover Publ., New York, 1950).

    MATH  Google Scholar 

  4. M. Karasev and E. Novikova, “Coherent transform of the spectral problem and algebras with nonlinear commutation relations,” J. Math. Sci. (New York) 95 (6), 2703–2798 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Y. Anikin and S. Y. Dobrokhotov, “Diophantine tori and pragmatic calculation of quasimodes for operators with integrable principal symbol,” Russ. J. Math. Phys. 27 (3), 299–308 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  6. E. M. Novikova, “New approach to the procedure of quantum averaging for the Hamiltonian of a resonance harmonic oscillator with polynomial perturbation for the example of the spectral problem for the cylindrical Penning trap,” Math. Notes 109 (5), 777–793 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Y. Dobrokhotov and A. I. Shafarevich, ““Momentum” tunneling between tori and the splitting of eigenvalues of the Laplace–Beltrami operator on Liouville surfaces,” Math. Phys., Anal. Geom. 2 (2), 141–177 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Avendano-Camacho, J. A. Vallejo, and Y. M. Vorobiev, “Higher order corrections to adiabatic invariants of generalized slow-fast Hamiltonian systems,” J. Math. Phys. 54 (8), 082704 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Karasev, “Adiabatics using phase space translations and small parameter “dynamics”,” Russ. J. Math. Phys. 22 (1), 20–25 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. M. Perelomov, Generalized Coherent States and Their Applications (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  11. M. Karasev and E. Novikova, “Non-Lie permutation representations, coherent states, and quantum embedding,” in Amer. Math. Soc. Transl. Ser. 2, Vol. 187: Coherent Transform, Quantization, and Poisson Geometry (Amer. Math. Soc., Providence, RI, 2008), pp. 1–202.

    Google Scholar 

  12. E. V. Vybornyi, “Energy splitting in dynamical tunneling,” Theor. Math. Phys. 181 (2), 1419–1427 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. V. Karasev and E. M. Novikova, “Algebra and quantum geometry of multifrequency resonance,” Izv. Math. 74 (6), 1155–1204 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Karasev and E. Vybornyi, “Bi-orbital states in hyperbolic traps,” Russ. J. Math. Phys. 25, 500–508 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Herfurth and H. K. Blaum, Lecture Notes in Phys., Vol. 749: Trapped Charged Particles and Fundamental Interactions (Springer, Berlin, 2008).

    Google Scholar 

  16. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  17. C. C. Gerry, “Berry’s phase in the degenerate parametric amplifier,” Phys. Rev. A 39 (6), 3204 (1989).

    Article  Google Scholar 

  18. M. Ban, “\(\operatorname{SU}(1,1)\) Lie algebraic approach to linear dissipative processes in quantum optics,” J. Math. Phys. 33 (9), 3213–3228 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Sunilkumar, B. A. Bambah, R. Jagannathan, P. K. Panigrahi, and V. Srinivasan, “Coherent states of nonlinear algebras: applications to quantum optics,” J. Opt. B Quantum Semiclass. Opt. 2 (2), 126 (2000).

    Article  MathSciNet  Google Scholar 

  20. M. G. Hu and J. L. Chen, “Quantum dynamical algebra \(\operatorname{SU}(1,1)\) in one-dimensional exactly solvable potentials,” Internat. J. Theor. Phys. 46 (8), 2119–2137 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Lévai, “Solvable potentials associated with \(\operatorname{su}(1,1)\) algebras: a systematic study,” J. Phys. A 27 (11), 3809 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Garg, “Quenched spin tunneling and diabolical points in magnetic molecules. I. Symmetric configurations,” Phys. Rev. B 64 (9), 094413 (2001).

    Article  Google Scholar 

  23. A. Garg, “Quenched spin tunneling and diabolical points in magnetic molecules. II. Asymmetric configurations,” Phys. Rev. B 64 (9), 094414 (2001).

    Article  Google Scholar 

  24. M. S. Foss-Feig and J. R. Friedman, “Geometric-phase-effect tunnel-splitting oscillations in single- molecule magnets with fourth-order anisotropy induced by orthorhombic distortion,” Europhys. Lett. 86 (2), 27002 (2009).

    Article  Google Scholar 

  25. A. V. Pereskokov, “Semiclassical asymptotic spectrum of the two-dimensional Hartree operator near a local maximum of the eigenvalues in a spectral cluster,” Theor. Math. Phys. 205 (3), 1652–1665 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. P. Maslov, “Global exponential asymptotics of solutions of tunnel equations and problems concerning large deviations,” Proc. Steklov Inst. Math. 163, 177–209 (1985).

    MATH  Google Scholar 

  27. V. P. Maslov, Asymptotic Methods and Perturbation Theory (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  28. V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation for Equations of Quantum Mechanics (Nauka, Moscow, 1976) [in Russian].

    MATH  Google Scholar 

  29. V. E. Nazaikinskii, B. Yu. Sternin, and V. E Shatalov, Methods of Noncommutative Analysis (Tekhnosfera, Moscow, 2002) [in Russian].

    MATH  Google Scholar 

  30. M. V. Karasev and M. B. Kozlov, “Quantum and semiclassical representations over Lagrangian submanifolds in \(\operatorname{su}(2)^*\), \(\operatorname{so}(4)^*\), and \(\operatorname{su}(1,1)^*\),” J. Math. Phys. 34 (11), 4986–5006 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  31. M. V. Karasev, “Connections on Lagrangian submanifolds and some quasiclassical approximation problems. I,” J. Math. Sci. 59 (5), 1053–1062 (1992).

    Article  Google Scholar 

  32. L. D. Landau and E. M. Lifshits, Theoretical Physics Vol. III: Quantum Mechanics (Nonrelativistic Theory) (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  33. M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations, in Reference Mathematical Library (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  34. M. A. Evgrafov and M. V. Fedoryuk, “Asymptotic behavior as \(\lambda\to\infty\) of the solution of the equation \(w''(z)-p(z,\lambda)w(z)=0\) in the complex plane \(z\),” Russ. Math. Surveys 21 (1), 1–48 (1966).

    Article  Google Scholar 

  35. F. A. Berezin and M. A. Shubin, Schrödinger Equation (Mosk. Gos. Univ., Moscow, 1983) [in Russian].

    MATH  Google Scholar 

Download references

Funding

The study was carried out in the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Vybornyi.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 112, pp. 665–681 https://doi.org/10.4213/mzm13777.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vybornyi, E.V., Rumyantseva, S.V. Semiclassical Asymptotics of Oscillating Tunneling for a Quadratic Hamiltonian on the Algebra \(\operatorname{su}(1,1)\). Math Notes 112, 642–655 (2022). https://doi.org/10.1134/S0001434622110025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622110025

Keywords

Navigation