Skip to main content
Log in

Inheritance of Generic Singularities of Solutions of a Linear Wave Equation by Solutions of Isoentropic Gas Motion Equations

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

It is shown that the catastrophe germs of smooth mappings determining the three generic (in the sense of mathematical catastrophe theory) singularities of solutions of systems of equations for a one-dimensional isoentropic gas coincide with the germs corresponding to similar singularities of solutions of a linear wave equation with constant coefficients. The conjecture is put forth that such an inheritance for generic singularities of solutions of systems of equations for a isoentropic gas must also take place in spatially multidimensional cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gurevich and A. B. Shvartsburg, Nonlinear Theory of Radiowave Propagation in Ionosphere (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  2. A. B. Shvartsburg, Geometric Optics in Nonlinear Wave Theory (Nauka, Moscow, 1977).

    Google Scholar 

  3. E. N. Pelinovskii, Hydrodynamics of Tsunami Waves (Inst. Prikl. Fiz. Ross. Akad. Nauk, Nizhnii Novgorod, 1996).

    Google Scholar 

  4. E. A. Kuznetsov and V. P. Ruban, “Collapse of vortex lines in hydrodynamics,” Zh. Éksper. Teoret. Fiz. 118 (4), 893–905 (2000).

    Google Scholar 

  5. N. M. Zubarev, “Development of the Instability of the Charged Surface of Liquid Helium: Exact solutions,” Pis’ma Zh. Éksper. Teoret. Fiz. 71 (9), 534–538 (2000).

    Google Scholar 

  6. V. P. Maslov, “Three algebras corresponding to nonsmooth solutions of systems of quasilinear hyperbolic equations,” Usp. Mat. Nauk 35 (2 (212)), 252–253 (1980).

    Google Scholar 

  7. V. V. Bulatov, Yu. V. Vladimirov, V. G. Danilov, and S. Yu. Dobrokhotov, “An example calculation of the trajectory of a typhoon eye based on V. P. Maslov’s conjecture,” Dokl. Ross. Akad. Nauk 338 (1), 102–105 (1994).

    Google Scholar 

  8. S. Y. Dobrokhotov, “Hugoniot–Maslov chains for solitary vortices of the shallow water equations. I. Derivation of the chains for the case of variable Coriolis forces and reduction to the Hill equation,” Russ. J. Math. Phys. 6 (2), 137–183 (1999).

    MathSciNet  MATH  Google Scholar 

  9. S. Yu. Dobrokhotov, K. V. Pankrashkin, and E. S. Semenov, “On Maslov’s Conjecture about the Structure of Weak Point Singularities of Shallow-Water Equations,” Dokl. Math. 64 (1), 127–130 (2001).

    MATH  Google Scholar 

  10. S. Yu. Dobrokhotov and B. Tirotstsi, “Localized solutions of one-dimensional non-linear shallow-water equations with velocity \( c=\sqrt x\),” Russian Math. Surveys 65 (1), 177–179 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Yu. Dobrokhotov, S. B. Medvedev, and D. S. Minenkov, “On transforms reducing one-dimensional systems of shallow-water to the wave equation with speed of sound \(c^2 = x\),” Math. Notes 93 (5), 704–714 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. E. Pelinovsky, E. N. Pelinovsky, E. A. Kartashova, T. G. Talipova, and A. Giniyatullin, “Universal power law for the energy spectrum of breaking Riemann waves,” Pis’ma in Zh. Éksper. Teoret. Fiz. 98 (4), 265–269 (2013).

    Google Scholar 

  13. B. Dubrovin, “On Hamiltonian perturbations of hyperbolic systems of conservation laws. II. Universality of critical behaviour,” Comm. Math. Phys. 267 (1), 117–139 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Dubrovin, T. Grava, and C. Klein, “On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation,” J. Nonlinear Sci. 19 (1), 57–94 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. B. G. Konopelchenko and G. Ortenzi, “Jordan form, parabolicity and other features of change of type transition for hydrodynamic type systems,” J. Phys. A 50 (21), Art. No. 215205 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. G. Konopelchenko and G. Ortenzi, “On the plane into plane mappings of hydrodynamic type. Parabolic case,” Rev. Math. Phys. 32 (3), 2050006 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  17. B. G. Konopelchenko and G. Ortenzi, “Quasi-classical approximation in vortex filament dynamics. Integrable systems, gradient catastrophe, and flutter,” Stud. Appl. Math. 130 (2), 167–199 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. I. A. Bogaevskii and D. V. Tunitskii, “Singularities of multivalued solutions of quasilinear hyperbolic systems,” Proc. Steklov Inst. Math. 308, 67–78 (2020).

    Article  MathSciNet  Google Scholar 

  19. R. N. Garifullin and B. I. Suleimanov, “From weak discontinuities to nondissipative shock waves,” J. Exper. Theor. Phys. 110 (1) 133–146 (2010).

    Article  Google Scholar 

  20. V. R. Kudashev and B. I. Suleimanov, “The effect of small dissipation on the origin of one-dimensional shock waves,” J. Appl. Math. Mech. 65 (3), 441–451 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  21. V. R. Kudashev and B. I. Suleimanov, “Characteristic features of some typical spontaneous intensivity collapse processes in unstable media,” JETP Lett. 62 (4), 382–388 (1995).

    Google Scholar 

  22. A. Kh. Rakhimov, “Singularities of solutions of quasilinear equations,” St. Petersburg Math. J. 4 (4), 813–818 (1993).

    MathSciNet  MATH  Google Scholar 

  23. A. Kh. Rakhimov, “Singularities of Riemannian invariants,” Funct. Anal. Appl. 27 (1), 39–50 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  24. B. I. Suleimanov, “Generic singularities of solutions of shallow water equations,” Dokl. Math. 85 (1), 125–128 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Suleimanov and A. M. Shavlukov, “A typical dropping cusp singularity of solutions to equations of a one-dimensional isentropic gas flow,” Bulletin of the Russian Academy of Sciences: Physics 84 (5), 552–554 (2020).

    Article  MathSciNet  Google Scholar 

  26. Yu. K. Alekseev and A. P. Sukhorukov, Introduction to Catastrophe Theory (Izd. Mosk. Univ., Moscow, 2000) [in Russian].

    Google Scholar 

  27. V. I. Arnol’d, A. N. Varchenko, and S. M. Gusein-Zade, Singularities of Differentiable Mappings. Vol. 1: Classification of Critical Points, Caustics and Wave Fronts (Nauka, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  28. T. Brocker and L. Lander, Differentiable Germs and Catastrophes (Cambridge Univ. Press, Cambridge, 1975).

    Book  MATH  Google Scholar 

  29. R. Gilmore, Catastrophe Theory for Scientists and Engineers (Wiley, New York, 1981).

    MATH  Google Scholar 

  30. T. Poston and I. Stewart, Catastrophe Theory and Its Applications (Pitman, London, 1978).

    MATH  Google Scholar 

  31. V. D. Sedykh, Mathematical Methods of Catastrophe Theory (MTsNMO, Moscow, 2021).

    Google Scholar 

  32. R. Thom, Structural Stability and Morphogenesis (CRC Press, Boca Raton, FL, 1989).

    MATH  Google Scholar 

  33. V. V. Goryunov, “Singularities of projections of full intersections,” J. Math. Sci. (N. Y.) 27 (3), 2785–2811 (1984).

    Article  MATH  Google Scholar 

  34. B. I. Suleimanov, Some Generic Singularities of Solutions of Equations with Small Parameter, Doctoral Dissertation in Physics and Mathematics (Inst. Math. with Comput. Centre—Subdivision of the Ufa Federal Research Centre of the Russ. Acad. Sci., Ufa, 2009).

    Google Scholar 

  35. B. Riemann, “Über die Fortflanzung ebener Lüftwellen von endlihenr Schwingungsweite,” Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 8, 43–66 (1860).

    Google Scholar 

  36. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  37. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2: Partial Differential Equations (Wiley, New York, 2008).

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank I. A. Bogaevskii for very useful discussions and advice.

Funding

The work of A. M. Shavlukov was supported by the Russian Science Foundation under grant 21-11- 00006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Suleimanov.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 112, pp. 625–640 https://doi.org/10.4213/mzm13583.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suleimanov, B.I., Shavlukov, A.M. Inheritance of Generic Singularities of Solutions of a Linear Wave Equation by Solutions of Isoentropic Gas Motion Equations. Math Notes 112, 608–620 (2022). https://doi.org/10.1134/S0001434622090292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622090292

Keywords

Navigation