Skip to main content
Log in

Berezin–Toeplitz Quantization on Symplectic Manifolds of Bounded Geometry

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The theory of Berezin–Toeplitz quantization on symplectic manifolds of bounded geometry is developed. The quantization space is a suitable eigenspace of the renormalized Bochner operator associated with a neighborhood of zero. It is proved that quantization has a correct semiclassical limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. B. Kostant, “Quantization and unitary representations,” Lect. Notes in Math. 170, 87–208 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  2. J.-M. Souriau, Structure des systèmes dynamiques (Dunod, Paris, 1970).

    MATH  Google Scholar 

  3. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, “Deformation theory and quantization,” Ann. Phys. 111, 61–151 (1978).

    Article  MATH  Google Scholar 

  4. M. V. Karasev and V. P. Maslov, “Asymptotic and geometric quantization,” Russian Math. Surveys 39 (6), 133–205 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. V. Karasev and V. P. Maslov, Nonlinear Poisson Brackets. Geometry and Quantization (Nauka, Moscow, 1991) [in Russian].

    MATH  Google Scholar 

  6. F. A. Berezin, “Quantization,” Izv. Math. 8 (5), 1109–1165 (1974).

    Article  MATH  Google Scholar 

  7. F. A. Berezin, “General concept of quantization,” Comm. Math. Phys. 40, 153–174 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. T. Ali and M. Engliš, “Quantization methods: a guide for physicists and analysts,” Rev. Math. Phys. 17, 391–490 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Engliš, “An excursion into Berezin–Toeplitz quantization and related topics,” in Quantization, PDEs, and geometry, Oper. Theory Adv. Appl. (Birkhäuser, Cham, 2016), Vol. 251, pp. 69–115.

    Chapter  MATH  Google Scholar 

  10. X. Ma, “Geometric quantization on Kähler and symplectic manifolds,” in Proceedings of the International Congress of Mathematicians, II (Hindustan Book Agency, New Delhi, 2010), pp. 785–810.

    Google Scholar 

  11. M. Schlichenmaier, “Berezin–Toeplitz quantization for compact Kähler manifolds. A review of results,” Adv. Math. Phys., Art. ID 927280 (2010).

    MATH  Google Scholar 

  12. M. Bordemann, E. Meinrenken, and M. Schlichenmaier, “Toeplitz quantization of Kähler manifolds and \(gl(n)\), \(n\to\infty\) limits,” Comm. Math. Phys. 165, 281–296 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Boutet de Monvel, and V. Guillemin, The spectral theory of Toeplitz operators, in Ann. Math. Stud. (Princeton Univ. Press, Princeton, NJ, 1981), Vol. 99.

    MATH  Google Scholar 

  14. V. Guillemin and A. Uribe, “The Laplace operator on the \(n\)th tensor power of a line bundle: eigenvalues which are uniformly bounded in \(n\),” Asymptotic Anal. 1, 105–113 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu. A. Kordyukov, X. Ma, and G. Marinescu, “Generalized Bergman kernels on symplectic manifolds of bounded geometry,” Comm. Partial Differential Equations 44, 1037–1071 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Ma and G. Marinescu, “Exponential estimate for the asymptotics of Bergman kernels,” Math. Ann. 362, 1327–1347 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Borthwick and A. Uribe, “Almost complex structures and geometric quantization,” Math. Res. Lett. 3, 845–861 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Ioos, W. Lu, X. Ma, and G. Marinescu, “Berezin-Toeplitz quantization for eigenstates of the Bochner-Laplacian on symplectic manifolds,” J. Geom. Anal. 30, 2615–2646 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  19. Yu. A. Kordyukov, “On asymptotic expansions of generalized Bergman kernels on symplectic manifolds,” St. Petersburg Math. J. 30 (2), 267–283 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Charles, “Quantization of compact symplectic manifolds,” J. Geom. Anal. 26, 2664–2710 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  21. C.-Y. Hsiao and G. Marinescu, “Berezin–Toeplitz quantization for lower energy forms,” Comm. Partial Differential Equations 42, 895–942 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  22. X. Ma and G. Marinescu, “Toeplitz operators on symplectic manifolds,” J. Geom. Anal. 18, 565–611 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Bauer and L. A. Coburn, “Uniformly continuous functions and quantization on the Fock space,” Bol. Soc. Mat. Mex. (3) 22, 669–677 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Borthwick, “Microlocal techniques for semiclassical problems in geometric quantization,” in Perspectives on Quantization, Contemp. Math. (Amer. Math. Soc., Providence, RI, 1998), Vol. 214, pp. 23–37.

    Chapter  MATH  Google Scholar 

  25. L. A. Coburn, “Deformation estimates for Berezin–Toeplitz quantization,” Comm. Math. Phys. 149, 415–424 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Bauer, L. A. Coburn, and R. Hagger, “Toeplitz quantization on Fock space,” J. Funct. Anal. 274, 3531–3551 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Bauer, R. Hagger, and N. Vasilevski, “Uniform continuity and quantization on bounded symmetric domains,” J. London Math. Soc.(2) 96, 345–366 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Borthwick, A. Lesniewski, and H. Upmeier, “Non-perturbative deformation quantization of Cartan domains,” J. Funct. Anal. 113, 153–176 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Engliš, “Weighted Bergman kernels and quantization,” Comm. Math. Phys. 227, 211–241 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Klimek and A. Lesniewskii, “Quantum Riemann surfaces I: the unit disc,” Comm. Math. Phys. 146, 103–122 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Engliš and H. Upmeier, “Asymptotic expansions for Toeplitz operators on symmetric spaces of general type,” Trans. Amer. Math. Soc. 367, 423–476 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  32. X. Ma and G. Marinescu, Holomorphic Morse Inequalities and Bergman Kernels, in Progr. Math. (Birkhäuser, Basel, 2007), Vol. 254.

    MATH  Google Scholar 

  33. X. Ma and G. Marinescu, “Generalized Bergman kernels on symplectic manifolds,” Adv. Math. 217, 1756–1815 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  34. X. Dai, K. Liu, and X. Ma, “On the asymptotic expansion of Bergman kernel,” J. Differential Geom. 72, 1–41 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  35. Yu. A. Kordyukov, “Semiclassical spectral analysis of the Bochner–Schrödinger operator on symplectic manifolds of bounded geometry,” Anal. Math. Phys. 12, 22, 37 (2022).

    Article  MATH  Google Scholar 

  36. L. Charles, “Berezin–Toeplitz operators, a semi-classical approach,” Comm. Math. Phys. 239, 1–28 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  37. Yu. A. Kordyukov, “\(L^p\)-theory of elliptic differential operators on manifolds of bounded geometry,” Acta Appl. Math. 23, 223–260 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  38. Yu. A. Kordyukov, “Berezin–Toeplitz quantization associated with higher Landau levels of the Bochner Laplacian,” J. Spectr. Theory 12 (1), 143–167 (2022).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was carried out in the framework of the development program of the Scientific-Educational Mathematical Center of Volga Federal District (agreement no. 075-02-2020-1478).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kordyukov.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 112, pp. 586–600 https://doi.org/10.4213/mzm13731.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kordyukov, Y.A. Berezin–Toeplitz Quantization on Symplectic Manifolds of Bounded Geometry. Math Notes 112, 576–587 (2022). https://doi.org/10.1134/S0001434622090267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622090267

Keywords

Navigation