Skip to main content
Log in

Asymptotic Solutions of Flow Problems with Boundary Layer of Double-Deck Structures

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this paper, the general scheme of constructing multiscale asymptotic solutions arising in problems of flow over a surface with small irregularities is considered and results of well-known studies in hydrodynamics are clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. The symbol \(\circ\) denotes all other variables on which the function \(f\) depends.

  2. Here the symbol \({}^\dagger\) denotes complex conjugation.

References

  1. V. P. Maslov, “Coherent structures, resonances, and asymptotic non-uniqueness for Navier–Stokes equations with large Reynolds numbers,” Russian Math. Surveys 41 (6), 23–42 (1986).

    Article  Google Scholar 

  2. V. P. Maslov, Asymptotic Methods for Solving Pseudo-Differential Equations (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  3. V. P. Maslov and A. I. Shafarevich, “Asymptotic solutions of Navier–Stokes equations and topological invariants of vector fields and Liouville foliations,” Theor. Math. Phys. 180 (2), 967–982 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. I. Shafarevich, “Differential equations on graphs describing asymptotic solutions of the Navier–Stokes equations localized in a small neighborhood of a curve.,” Differ. Equations 34 (8), 1124–1134 (1998).

    MATH  Google Scholar 

  5. V. P. Maslov and A. I. Shafarevich, “Fomenko invariants in the asymptotic theory of the Navier–Stokes equations,” J. Math. Sci. (New York) 225 (4), 666–680 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Yu. Dobrokhotov and V. P. Maslov, “Finite-zone, almost-periodic solutions in WKB approximations,” J. Math. Sci. (New York) 16 (6), 1433–1487 (1980).

    MATH  Google Scholar 

  7. H. Flaschka, M. G. Forest, and D. W. McLaughlin, “The multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation,” Comm. Pure Appl. Math. 33 (6), 739–784 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  8. I. M. Krichever, “Method of averaging for two-dimensional “integrable” equations,” Functional Anal. Appl. 22 (3), 200–213 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  9. V. G. Danilov and M. V. Makarova, “Asymptotic and numerical analysis of the flow around a plate with small periodic irregularities,” Russ. J. Math. Phys. 2 (1), 49–56 (1994).

    MathSciNet  MATH  Google Scholar 

  10. F. T. Smith, “Laminar flow over a small hump on a flat plate,” J. Fluid Mech. 57, 803–824 (1973).

    Article  MATH  Google Scholar 

  11. V. G. Danilov, V. P. Maslov, and K. A. Volosov, Mathematical Modeling of Heat and Mass Transfer Processes (Kluwer Acad. Publ., Dordrecht, 1995).

    Book  MATH  Google Scholar 

  12. V. G. Danilov and K. Yu. Rossinskii, “Streamline of a plate with small periodic irregularities.,” Mat. Model. 15 (11), 91–109 (2003).

    MathSciNet  MATH  Google Scholar 

  13. J. Mauss, A. Achiq, and S. Saintlos, “Sur l’analyse conduisant á la théorie de la triple couche,” C. R. Acad. Sci. Paris. Sér. II 315, 1611–1614 (1992).

    MATH  Google Scholar 

  14. J. Mauss, “Asymptotic modelling for separating boundary layers,” in Lecture Notes in Phys., Vol. 442: Asymptotic Modelling in Fluid Mechanics (Springer, Berlin, 1995), pp. 239–254.

    Chapter  Google Scholar 

  15. V. G. Danilov and R. K. Gaydukov, “Double-deck structure of the boundary layer in problems of flow around localized perturbations on a plate,” Math. Notes 98 (4), 561–571 (2015).

    Article  MATH  Google Scholar 

  16. V. G. Danilov and R. K. Gaydukov, “Vortexes in the Prandtl boundary layer induced by irregularities on a plate,” Russ. J. Math. Phys. 22 (2), 161–173 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. K. Gaydukov, “Double-deck structure of the boundary layer in the problem of a compressible flow along a plate with small irregularities on the surface,” Eur. J. Mech. B Fluids 66, 102–108 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. K. Gaydukov, “Double-deck structure in the fluid flow problem over plate with small irregularities of time-dependent shape,” Eur. J. Mech. B Fluids 89, 401–410 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  19. V. G. Danilov and R. K. Gaydukov, “Double-deck structure of the boundary layer in the problem of flow in an axially symmetric pipe with small irregularities on the wall for large Reynolds numbers,” Russ. J. Math. Phys. 24 (1), 1–18 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. R. K. Gaydukov and A. V. Fonareva, “Double-deck structure in the fluid flow induced by a uniformly rotating disk with small symmetric irregularities on its surface,” Eur. J. Mech. B Fluids 94, 50–59 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Ya. Neiland, “Theory of laminar boundary-layer separation in supersonic flow,” Fluid Dyn. 4, 33–35 (1969).

    MATH  Google Scholar 

  22. A. H. Nayfeh, “Triple-deck structure,” Comput. Fluids 20, 269–292 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Stewartson, “Multistructured boundary layers on flat plates and related bodies,” Adv. Appl. Mech. 14, 145–239 (1974).

    Article  Google Scholar 

  24. R. Yapalparvi, “Double-deck structure revisited,” Eur. J. Mech. B Fluids 31, 53–70 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Chicchiero, A. Segalini, and S. Camarri, “Triple-deck analysis of the steady flow over a rotating disk with surface roughness,” Phys. Rev. Fluids 6, 014103 (2021).

    Article  Google Scholar 

  26. M. I. Vishik and L. A. Lyusternik, “The asymptotic behavior of solutions of linear differential equations with large or quickly changing coefficients and boundary conditions,” Russian Math. Surveys 15 (4), 23–91 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  27. F. T. Smith and O. R. Burggraf, “On the development of large-sized short-scaled disturbances in boundary layers,” Proc. Royal Soc. Lond. Ser. A 399, 25–55 (1985).

    Article  MATH  Google Scholar 

  28. O. S. Ryzhov, “Triple-deck instability of supersonic boundary layers,” AIAA J. 50 (8), 1733–1741 (2012).

    Article  Google Scholar 

  29. S. Iyer and V. Vicol, “Real analytic local well-posedness for the triple deck,” Comm. Pure Appl. Math. 74 (8), 1641–1684 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  31. R. K. Gaydukov and D. I. Borisov, “Existence of the stationary solution of a Rayleigh-type equation,” Math. Notes 99 (5), 636–642 (2016).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The study was implemented in the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Gaydukov.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 112, pp. 521–533 https://doi.org/10.4213/mzm13728.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaydukov, R.K., Danilov, V.G. Asymptotic Solutions of Flow Problems with Boundary Layer of Double-Deck Structures. Math Notes 112, 523–532 (2022). https://doi.org/10.1134/S000143462209022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000143462209022X

Keywords

Navigation