Skip to main content
Log in

Lauricella Function and the Conformal Mapping of Polygons

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this paper, some progress has been made in solving the problem of calculating the parameters of the Schwarz–Christoffel integral realizing a conformal mapping of a canonical domain onto a polygon. It is shown that an effective solution of this problem can be found by applying the formulas of analytic continuation of the Lauricella function \(F_D^{(N)}\), which is a hypergeometric function of \(N\) complex variables. Several new formulas for such a continuation of the function \(F_D^{(N)}\) are presented that are oriented to the calculation of the parameters of the Schwarz–Christoffel integral in the “crowding” situation. An example of solving the parameter problem for a complicated polygon is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. M. A. Lavrent’ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable (Nauka, Moscow, 1958) [in Russian].

    Google Scholar 

  2. G. M. Goluzin, Geometric theory of functions of a complex variable (AMS, Providence, RI, 1969).

    Book  MATH  Google Scholar 

  3. W. von Koppenfels and F. Stallmann, Praxis der konformen Abbilung (Springer, Berlin-Göttingen- Heidelberg, 1959) [in German].

    Book  MATH  Google Scholar 

  4. G. Goluzin, L. Kantorovich, V. Krylov, P. Melent’ev, M. Muratov and N. Stenin, Conformal Mapping of Simply Connected and Multiply Connected Domains (Nauka, Leningrad–Moscow, 1937) [in Russian].

    Google Scholar 

  5. L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis (Interscience Publishers, Inc.; P. Noordhoff Ltd., New York, Groningen, 1958).

    MATH  Google Scholar 

  6. D. Gaier, Konstructive Methoden der konformen Abbildung (Springer- Verlag, Berlin, 1964).

    Book  MATH  Google Scholar 

  7. L. N. Trefethen, “Numerical computation of the Schwarz–Christoffel transformation,” SIAM J. Sci. Stat. Comput. 1, 82–102 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Menikoff and C. Zemach, “Methods for numerical conformal mapping,” J. Comput. Phys. 36 (3), 366–410 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  9. Numerical Conformal Mapping, Ed. by L. N. Trefethen (North Holland, Amsterdam, 1986).

    MATH  Google Scholar 

  10. P. Henrici, Applied and Computational Complex Analysis (John Wiley and Sons, New York, 1991), Vol. 1–3.

    MATH  Google Scholar 

  11. L. N. Trefethen, “Numerical construction of conformal maps,”; in Fundamentals of Complex Analysis for Mathematics, Science, and Engineering (Prentice Hall, New York, 1993).

  12. P. K. Kythe, Computational Conformal Mapping (Birkhäuser, Basel, 1998).

    Book  MATH  Google Scholar 

  13. L. N. Trefethen and T. A. Driscoll, Schwarz–Christoffel Transformation (Cambridge Univ. Press, Campridge, 2005).

    MATH  Google Scholar 

  14. N. Papamichael and N. Stylianopoulos, Numerical Conformal Mapping. Domain Decomposition and the Mapping of Quadrilaterals (World Sci. Publ., Hackensack, 2010), pp. xii+229 pp..

    Book  MATH  Google Scholar 

  15. S. I. Bezrodnykh, “The Lauricella hypergeometric function \(F_D^{(N)}\), the Riemann–Hilbert problem, and some applications,” Russian Math. Surveys 73 (6), 941–1031 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. I. Bezrodnykh, “Analytic continuation of Lauricella’s function \(F_D^{(N)}\) for large in modulo variables near hyperplanes \(\{z_j=z_l\}\),” Integral Transforms Spec. Funct. 33 (4), 276-291 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. I. Bezrodnykh, “Analytic continuation of Lauricella’s function \(F_D^{(N)}\) for variables close to unit near hyperplanes \(\{z_j=z_l\}\),” Integral Transforms Spec. Funct. 33 (5), 419–433 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Lauricella, “Sulle funzioni ipergeometriche a piu variabili,” Rend. Circ. Math. Palermo 7, 111–158 (1893).

    Article  MATH  Google Scholar 

  19. H. Exton, Multiple Hypergeometric Functions and Application (John Wiley and Sons, New York, 1976).

    MATH  Google Scholar 

  20. K. Iwasaki, H. Kimura, Sh. Shimomura, and M. Yoshida, From Gauss to Painlevé. A Modern Theory of Special Functions, in Aspects Math. (Friedrich Vieweg and Sohn, Braunschweig, 1991), Vol. E16.

    Book  MATH  Google Scholar 

  21. S. I. Bezrodnykh and V. I. Vlasov, “The Riemann–Hilbert problem in a complicated domain for a model of magnetic reconnection in a plasma,” Comput. Math. Math. Phys. 42 (3), 263–298 (2002).

    MathSciNet  MATH  Google Scholar 

  22. S. I. Bezrodnykh and V. I. Vlasov, “The Riemann–Hilbert problem in domains of complicated form and its application,” Spectral and Evolution Problems 16 (1), 51–61 (2006) [in Russian].

    Google Scholar 

  23. A. B. Bogatyrev, “Conformal mapping of rectangular heptagons,” Sb. Math. 203 (12), 1715–1735 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  24. N. N. Nakipov and S. R. Nasyrov, “A parametric method of finding accessory parameters for the generalized Schwarz–Christoffel integrals,” in Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, (Kazan University, Kazan, 2016), Vol. 158, pp. 202–220.

    MathSciNet  Google Scholar 

  25. C. Zemach, “A conformal map formula for difficult cases,” J. Comput. Appl. Math. 14, 207–215 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  26. B. C. Krikeles and R. L. Rubin, “On the crowding of parameters associated with Schwarz–Christoffel transformation,” Appl. Math. Comput. 28 (4), 297–308 (1988).

    MathSciNet  MATH  Google Scholar 

  27. T. A. Driscoll, “A MATLAB toolbox for Schwarz–Christoffel mapping,” ACM Transactions Math. Soft. 22, 168–186 (1996).

    Article  MATH  Google Scholar 

  28. L. Banjai, “Revisiting the crowding phenomenon in Schwarz–Christoffel mapping,” SIAM J. Sci. Comput. 30 (2), 618–636 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions (Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981), Vol. I.

    MATH  Google Scholar 

  30. S. I. Bezrodnykh and V. I. Vlasov, “Asymptotics of the Riemann–Hilbert Problem for a Magnetic Reconnection Model in Plasma,” Comp. Math. and Math. Phys. 60 (11), 1898–1914 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  31. V. I. Vlasov, Boundary Value Problems in Domains with a Curvilinear Boundary, Doctoral (Phys.– Math.) Dissertation (VTs AN SSSR, Moscow, 1990) [in Russian].

    Google Scholar 

  32. T. S. O’Connell and P. T. Krein, “A Schwarz–Christoffel-based analytical method for electric machine field analysis,” IEEE Transactions on Energy Conversion 24 (3), 565–577 (2009).

    Article  Google Scholar 

  33. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher Transcendental Functions (Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981), Vol. II, III.

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation under grant 22-21-00727, https:// rscf.ru/ project/22-21-00727/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Bezrodnykh.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 112, pp. 500–520 https://doi.org/10.4213/mzm13694.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezrodnykh, S.I. Lauricella Function and the Conformal Mapping of Polygons. Math Notes 112, 505–522 (2022). https://doi.org/10.1134/S0001434622090218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622090218

Keywords

Navigation