Skip to main content
Log in

Emergence of a Hierarchy of Singularities in Zero-Pressure Media. Two-Dimensional Case

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Generalized solutions of the system of zero-pressure gas dynamics equations in the case of two spatial variables are considered. In contrast to the much-studied case of one spatial variable, the two-dimensional situation, as well as the multidimensional situation in general, is characterized by the fact that strong singularities can arise on manifolds of various dimensions. This property will be referred to as the existence of a hierarchy of strong singularities. We show that the generalization of the Rankine–Hugoniot relations must be extended in the presence of a hierarchy of singularities and give the form of such an extension. We use the Riemann initial data as an example to show how to construct a generalized solution in the case of a hierarchy of singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. A. N. Kraiko, “On discontinuity surfaces in zero-pressure media,” Prikl. Mat. Mekh. 43 (3), 500–510 (1979).

    MathSciNet  Google Scholar 

  2. F. Bouchut, “On zero-pressure gas dynamics,” in Advances in Kinetic Theory and Computing, Ser. Adv. Math. Appl. Sci., Ed. by B. Perthame (World Sci., Singapore, 1994), Vol. 22, pp. 171–190.

    Google Scholar 

  3. Weinan E, Yu. G. Rykov, and Ya. G. Sinai, “The Lax–Oleinik variational principle for some one-dimensional systems of quasilinear equations,” Russian Math. Surveys 50 (1), 220–222 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Grenier, “Existence globale pour la système des gaz sans pression,” C. R. Acad. Sci. Ser. I. Math. 321 (2), 171–174 (1995).

    MathSciNet  MATH  Google Scholar 

  5. Weinan E, Yu. G. Rykov, and Ya. G. Sinai, “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in ashesion particle dynamics,” Comm. Math. Phys. 177, 349–380 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Huang and Z. Wang, “Well posedness for pressureless flow,” Comm. Math. Phys. 222 (1), 117–146 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Li and G. Warnecke, “Generalized characteristics and the uniqueness of entropy solutions to zero-pressure gas dynamics,” Adv. Differential Equations 8 (8), 961–1004 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Hynd, “A trajectory map for the pressureless Euler equations,” Trans. Amer. Math. Soc. 373 (10), 6777–6815 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Li, T. Zhang, and S. L. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics (Longman, London, 1998).

    MATH  Google Scholar 

  10. J. F. Colombeau, Elementary Introduction to New Generalized Functions, in North-Holland Math. Stud. (North-Holland, Amsterdam, 1985), Vol. 113.

    MATH  Google Scholar 

  11. Yu. G. Rykov, The Singularities of Type of Shock Waves in Pressureless Medium, the Solutions in the Sense of Measures and Colombeau’s Sense, in Keldysh Institute Preprints (Keldysh Institute for Applied Mathematics, Moscow, 1998), Vol. 030 [in Russian].

    Google Scholar 

  12. Yu. G. Rykov, “On the nonhamiltonian character of shocks in 2-D pressureless gas,” Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5, 55–78 (2002).

    MathSciNet  MATH  Google Scholar 

  13. Yu. G. Rykov, “A variational principle for a two-dimensional system of equations of gas dynamics without stress,” Russian Math. Surveys 51 (1), 162–164 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Li and H. Yang, “Delta-shock waves as limits of vanishing viscosity for multidimensional zero-pressure gas dynamics,” Quart. Appl. Math. 59, 315–342 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. M. Shelkovich, “\(\delta\)- and \(\delta'\)-shock wave types of singular solutions of systems of conservation laws and transport and concentration processes,” Russian Math. Surveys 63 (3), 473–546 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Albeverio, O. S. Rozanova and V. M. Shelkovich, Transport and Concentration Processes in the Multidimensional Zero-Pressure Gas Dynamics Model With Energy Conservation Law, arXiv: 1101.5815 (2011).

    Google Scholar 

  17. Yu. G. Rykov, “Solutions with substance decay in pressureless gas dynamics systems,” Math. Notes 108 (3), 465–468 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  18. N. V. Klyushnev and Yu. G. Rykov, “Non-conventional and conventional solutions for one-dimensional pressureless gas,” Lobachevskii J. Math. 42 (11), 2615–2625 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Khanin and A. Sobolevski, “Particle dynamics inside shocks in Hamilton–Jacobi equations,” Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 368 (1916), 1579–1593 (2010).

    MathSciNet  MATH  Google Scholar 

  20. K. Khanin and A. Sobolevski, “On dynamics of Lagrangian trajectories for Hamilton–Jacobi equations,” Arch. Ration. Mech. Anal. 219 (2), 861–885 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. N. Gurbatov, A. I. Saichev, and S. F. Shandarin, “Large-scale structure of the Universe. The Zeldovich approximation and the adhesion model,” Phys. Usp. 55 (3), 223–249 (2012).

    Article  Google Scholar 

  22. M. Sever, “An existence theorem in the large for zero-pressure gas dynamics,” Differential Integral Equations 14 (9), 1077–1092 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Bressan and T. Nguyen, “Non-existence and non-uniqueness for multidimensional sticky particle systems,” Kinet. Relat. Models 7 (2), 205–218 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Bianchini and S. Daneri, On the Sticky Particle Solutions to the Multi-Dimensional Pressureless Euler Equations, arXiv: 2004.06557 (2020).

    MATH  Google Scholar 

  25. A. I. Aptekarev and Yu. G. Rykov, “Variational principle for multidimensional conservation laws and pressureless media,” Russian Math. Surveys 74 (6), 1117–1119 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. I. Aptekarev and Yu. G. Rykov, “Detailed description of the evolution mechanism for singularities in the system of pressureless gas dynamics,” Dokl. Math. 99 (1), 79–82 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Pang, “The Riemann problem for the two-dimensional zero-pressure Euler equations,” J. Math. Anal. Appl. 472 (2), 2034–2074 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Chertock, A. Kurganov, and Yu. Rykov, “A new sticky particle method for pressureless gas dynamics,” SIAM J. Numer. Anal. 45 (6), 2408–2441 (2007).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Aptekarev.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 112, pp. 486–499 https://doi.org/10.4213/mzm13587.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aptekarev, A.I., Rykov, Y.G. Emergence of a Hierarchy of Singularities in Zero-Pressure Media. Two-Dimensional Case. Math Notes 112, 495–504 (2022). https://doi.org/10.1134/S0001434622090206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622090206

Keywords

Navigation