Skip to main content
Log in

New Congruences for Broken \(k\)-Diamond and \(k\) Dots Bracelet Partitions

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Let \(\Delta_k(n)\) denote the number of broken \(k\)-diamond partitions of n. Recently, Radu and Sellers studied the parity of the function \(\Delta_3(n)\) and posed a conjecture. They proved that the conjecture is true for \(\alpha = 1\). Using the theory of modular forms, we give a new proof of the conjecture for \(\alpha = 1\). Based on these results, we deduce some new infinite families of congruences modulo 2 for \(\Delta_3(n)\). Similarly, we find several new congruences modulo 4 for \(\Delta_3(n)\) and a new Ramanujan type congruence for \(\Delta_2(n)\) modulo 2. Furthermore, let \(\mathfrak{B}_k(n)\) denote the number of \(k\) dots bracelet partitions of \(n\). We also deduce some new Ramanujan type congruences for \(\mathfrak{B}_{5^\alpha}(n)\) and \(\mathfrak{B}_{7^\alpha}(n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Andrews and P. Paule, “MacMahon’s partition analysis XI: Broken diamonds and modular forms,” Acta Arith. 126, 281–294 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. M. D. Hirschhorn and J. A. Sellers, “On recent congruence results of Andrews and Paule for broken \(k\)-diamonds,” Bull. Aust. Math. Soc. 75, 121–126 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  3. X. W. Xia, “More infinite families of congruences modulo 5 for broken 2-diamond partitions,” J. Number Theory 170, 250–262 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. H. Chan, “Some congruences for Andrews–Paule’s broken 2-diamond partitions,” Discrete Math. 308, 5735—5741 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Paule and S. Radu “Infinite families of strange partition congruences for broken 2-diamonds,” Ramanujan J. 23, 409–416 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Fu, “Combinatorial proof of one congruence for the broken 1-diamond partition and a generalization,” Int. J. Number Theory 7, 133–144 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Radu and J. A. Sellers, “An extensive analysis of the parity of broken 3-diamond partitions,” J. Number Theory 133, 3703–3716 (2013).

    MATH  Google Scholar 

  8. K. Ono, Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-Series (Amer. Math. Soc., Rhode Island, 2004).

    MATH  Google Scholar 

  9. F. Diamond and J. Shurman, A First Course in Modular Forms (Springer-Verlag, Berlin, 2000).

    MATH  Google Scholar 

  10. B. C. Berndt, Number Theory in the Spirit of Ramanujan (Amer. Math. Soc., 2006), Vol. 34.

    Article  MathSciNet  MATH  Google Scholar 

  11. Z. Cao, “On Somos’ dissection identities,” J. Math. Anal. Appl. 365, 659—667 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. V. Voskresenskaya, “Dedekind eta-function in modern research,” J. Math. Sci. 235, 788–822 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  13. J.P. Serre, “Sur la lacunarité des puissances de \(\eta\),” Glasg. Math. J. 27, 203–221 (1985).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Jun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, JJ. New Congruences for Broken \(k\)-Diamond and \(k\) Dots Bracelet Partitions. Math Notes 112, 393–405 (2022). https://doi.org/10.1134/S0001434622090085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622090085

Keywords

Navigation