Skip to main content
Log in

Existence of Solutions to the Nonlinear Kantorovich Transportation Problem

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We study the existence of solutions to the Kantorovich optimal transportation problem with a nonlinear cost functional generated by a cost function depending on the transport plan. We also consider the case of a cost function depending on the conditional measures of the transport plan. Broad sufficient conditions are obtained for the existence of optimal plans for Radon marginal distributions on completely regular spaces and a lower semicontinuous cost function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ambrosio and N. Gigli, “A user’s guide to optimal transport,” in Lecture Notes in Math., Vol. 2062: Modelling and Optimisation of Flows on Networks (Springer, Heidelberg, 2013), pp. 1–155.

    Google Scholar 

  2. V. I. Bogachev and A. V. Kolesnikov, “Monge–Kantorovich problem: achievements, connections, and prospects,” Russian Math. Surveys 67 (5), 785–890 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. T. Rachev and L. Rüschendorf, Mass Transportation Problems. I (Springer, New York, 1998); Mass Transportation Problems. II (Springer, New York, 1998).

    MATH  Google Scholar 

  4. F. Santambrogio, Optimal Transport for Applied Mathematicians (Birkhäuser, New York, 2015).

    Book  MATH  Google Scholar 

  5. C. Villani, Optimal Transport, Old and New (Springer, New York, 2009), pp. xxii+973.

    Book  MATH  Google Scholar 

  6. N. Gozlan, C. Roberto, P. M. Samson, and P. Tetali, “Kantorovich duality for general transport costs and applications,” J. Funct. Anal. 273 (11), 3327–3405 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  7. J. J. Alibert, G. Bouchitté, and T. Champion, “A new class of costs for optimal transport planning,” European J. Appl. Math. 30 (6), 1229–1263 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Backhoff-Veraguas, M. Beiglböck, and G. Pammer, “Existence, duality, and cyclical monotonicity for weak transport costs,” Calc. Var. Partial Differ. Equ. 58 (203), 1–28 (2019).

    MathSciNet  MATH  Google Scholar 

  9. B. Acciaio, M. Beiglböck, and G. Pammer, “Weak transport for non-convex costs and model-independence in a fixed-income market,” Math. Finance 31 (4), 1423–1453 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Backhoff-Veraguas and G. Pammer, “Applications of weak transport theory,” Bernoulli J. 28 (1), 370–394 (2022).

    MathSciNet  MATH  Google Scholar 

  11. V. I. Bogachev, Measure Theory. I, II (Springer, Berlin, 2007).

    Book  MATH  Google Scholar 

  12. V. I. Bogachev, Weak Convergence of Measures (Amer. Math. Soc., Providence, RI, 2018).

    Book  MATH  Google Scholar 

  13. P. Engelking, General Topology (Polish Sci. Publ., Warszawa, 1977), pp. 626.

    Google Scholar 

  14. D. H. Fremlin, R. A. Johnson, and E. Wajch, “Countable network weight and multiplication of Borel sets,” Proc. Amer. Math. Soc. 124 (9), 2897–2903 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  15. D. H. Fremlin, Measure Theory. Vol. 4: Topological Measure Spaces. Part I, II (Colchester, 2006).

    MATH  Google Scholar 

  16. V. I. Bogachev, “On sequential properties of spaces of measures,” Math. Notes 110 (3), 449–453 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Korman and R. J. McCann, “Optimal transportation with capacity constraints,” Trans. Amer. Math. Soc. 367 (3), 1501–1521 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. I. Bogachev, A. N. Doledenok, and I. I. Malofeev, “The Kantorovich problem with a parameter and density constraints,” Nath. Notes 110 (6), 952–955 (2021).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research under grant 20-01-00432, the project “Kantorovich’s parametric problem of optimal transportation”, with the support of PSTGU and the “Living Tradition” foundation, and also supported by the Ministry of Education and Science of the Russian Federation as part of the program of the Moscow Center for Fundamental and Applied Mathematics under the agreement No. 075-15-2022-284 (results in Sec. 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bogachev.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 112, pp. 360–370 https://doi.org/10.4213/mzm13545.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, V.I., Rezbaev, A.V. Existence of Solutions to the Nonlinear Kantorovich Transportation Problem. Math Notes 112, 369–377 (2022). https://doi.org/10.1134/S0001434622090048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622090048

Keywords

Navigation