Skip to main content
Log in

Holomorphic Reflexivity for Locally Finite and Profinite Groups: The Abelian and General Cases

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Akbarov’s theory of holomorphic reflexivity for topological Hopf algebras has been developed in two directions, namely, by the complication of definitions when expanding the scope and by their simplification when restricting. In the framework of the latter approach, we establish the holomorphic reflexivity for topological Hopf algebras associated with locally finite countable groups and second-countable profinite groups. In the Abelian case, the reflexivity is described in terms close to the classical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Akbarov, “Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity,” J. Math. Sci. 162 (4), 459–586 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  2. O. Yu. Aristov, “On holomorphic reflexivity conditions for complex Lie groups,” Proc. Edinb. Math. Soc. (2) 64 (4), 800–821 (2021). arXiv: arXiv: 2002.03617

    Article  MathSciNet  Google Scholar 

  3. O. Yu. Aristov, “Arens–Michael envelopes of nilpotent Lie algebras, holomorphic functions of exponential type and homological epimorphisms,” in Trans. Moscow Math. Soc. (2020), Vol. 81, pp. 97–114.

    MathSciNet  MATH  Google Scholar 

  4. A. Yu. Pirkovskii, “Stably flat completions of universal enveloping algebras,” Dissertationes Math. (Rozprawy Math.) 441, 1–60 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Yu. Aristov, “Holomorphically Finitely Generated Hopf Algebras and Quantum Lie Groups”, arXiv: 2006.12175 (2020).

    Google Scholar 

  6. S. S. Akbarov, Holomorphic Duality for Countable Discrete Groups, arXiv: 2009.03372 (2020).

    Google Scholar 

  7. P. Bonneau, M. Flato, M. Gerstenhaber, and G. Pinczon, “The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations,” Comm. Math. Phys. 161, 125–156 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  8. O. Yu. Aristov, “An analytic criterion for the local finiteness of a countable semigroup,” Sib. Math. J. 63 (3), 421–424 (2022); arXiv: 2104.03230 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Ribes and P. Zalesskii, Profinite Groups (Springer, Berlin, 2010).

    Book  MATH  Google Scholar 

  10. K. H. Hofmann and S. A. Morris, The Lie Theory of Connected Pro-Lie Groups (European Math. Soc., Zürich, 2007).

    Book  MATH  Google Scholar 

  11. K. H. Hofmann and S. A. Morris, “Pro-Lie groups: A survey with open problems,” Axioms 4, 294–312 (2015).

    Article  MATH  Google Scholar 

  12. K. Choiy, A note on the Image of Continuous Homomorphisms of Locally Profinite Groups, arXiv: https://www.math.purdue.edu/~tongliu/teaching/598/p-adicrep.pdf.

    Google Scholar 

  13. B. Casselman, Introduction to Admissible Representations of \(p\)-Adic Groups, Unpublished Notes, arXiv: https://secure.math.ubc.ca/~cass/research/pdf/Smooth.pdf (1995).

    Google Scholar 

  14. F. Bruhat, “Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes \(p\)-adique,” Bull. Soc. Math. France 89, 43–75 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  15. G. L. Litvinov, “Group representations in locally convex spaces and topological group algebras,” Tr. Sem. Vektor. Tensor. Anal. 16, 267–349 (1968).

    MathSciNet  MATH  Google Scholar 

  16. S. S. Platonov, “Spectral synthesis on zero-dimensional locally compact abelian groups,” Russian Universities Reports. Mathematics 24 (128), 450–456 (2019) [in Russian].

    Article  Google Scholar 

  17. H. H. Schaefer, Topological Vector Spaces (Springer-Verlag, New York–Berlin, 1971).

    Book  MATH  Google Scholar 

  18. T. Heintz and J. Wengenroth, “Inductive limits of locally m-convex algebras,” Bull. Belg. Math. Soc. Simon Stevin 11 (1), 149–152 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Akkar and C. Nacir, “Structure m-convexe dúne algébre limite inductive localement convexe dálgébres de Banach,” Rend. Sem. Mat. Univ. Padova 95, 107–126 (1996).

    MathSciNet  MATH  Google Scholar 

  20. G. Köthe, Topological Vector Spaces. I (Springer, New York, 1969).

    MATH  Google Scholar 

  21. G. Köthe, Topological Vector Spaces. II (Springer, New York, 1979).

    Book  MATH  Google Scholar 

  22. K. D. Bierstedt, “An introduction to locally convex inductive limits,” in Functional Analysis and Its Applications (World Sci. Publ., Singapore, 1986), pp. 35–133.

    Google Scholar 

  23. K. Floret and J. Wloka, “Einführung in die Theorie der lokalkonvexen Räume,” in Lecture Notes in Math. (Springer, Berlin, 1968), Vol. 56.

    MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to S. S. Akbarov for useful remarks that improved the quality of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Aristov.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 112, pp. 323–336 https://doi.org/10.4213/mzm13477.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristov, O.Y. Holomorphic Reflexivity for Locally Finite and Profinite Groups: The Abelian and General Cases. Math Notes 112, 339–348 (2022). https://doi.org/10.1134/S0001434622090012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622090012

Keywords

Navigation