Skip to main content
Log in

On the Approximation of Solutions to the Heat Equation in the Lebesgue Class \(L^2\) by More Regular Solutions

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

A criterion for the approximability of all solutions of the heat equation in a bounded cylindrical domain that belong to the Lebesgue class by more regular (e.g., Sobolev) solutions of the same equation in a bounded cylindrical domain with larger base is obtained. Namely, the complement of the smaller base to the larger one must have no (nonempty connected) compact components. As an important corollary, we prove a theorem on the existence of a doubly orthogonal basis for the corresponding pair of Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. F. Jones (Jr.), “An approximation theorem of Runge type for the heat equation,” Proc. Amer. Math. Soc. 52 (1), 289–292 (1975).

    Article  MathSciNet  Google Scholar 

  2. R. Diaz, “A Runge theorem for solutions of the heat equation,” Proc. Amer. Math. Soc. 80 (4), 643–646 (1980).

    Article  MathSciNet  Google Scholar 

  3. P. M. Gauthier and N. N. Tarkhanov, “Rational approximation and universality for a quasilinear parabolic equation,” J. Contemp. Math. Anal. 43, 353–364 (2008).

    Article  MathSciNet  Google Scholar 

  4. C. Runge, “Zur Theorie der eindeutigen analytischen Funktionen,” Acta Math. 6, 229–244 (1885).

    Article  MathSciNet  Google Scholar 

  5. S. N. Mergelyan, “Harmonic approximation and approximate solution of the Cauchy problem for the Laplace equation,” Uspekhi Mat. Nauk 11 (5(71)), 3–26 (1956).

    MathSciNet  Google Scholar 

  6. B. Malgrange, “Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution,” Ann. Inst. Fourier (Grenoble) 6, 271–355 (1956).

    Article  Google Scholar 

  7. N. Tarkhanov, The Analysis of Solutions of Elliptic Equations (Kluwer Acad. Publ., Dordrecht, 1997).

    Book  Google Scholar 

  8. A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory,” Russian Math. Surveys 22 (6), 139–200 (1967).

    Article  MathSciNet  Google Scholar 

  9. V. P. Havin, “Approximation by analytic functions in the mean,” Dokl. Akad. Nauk SSSR 178 (5), 1025–1028 (1968).

    MathSciNet  Google Scholar 

  10. L. I. Hedberg, “Nonlinear potential theory and Sobolev spaces,” in Nonlinear Analysis, Function Spaces and Applications, Teubner-Texte Math. (Teubner, Leipzig, 1986), Vol. 93, pp. 5–30.

    Google Scholar 

  11. I. F. Krasichkov, “Systems of functions with the dual orthogonality property,” Math. Notes 4 (5), 821–824 (1968).

    Article  Google Scholar 

  12. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  13. N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations (Akademie Verlag, Berlin, 1995).

    MATH  Google Scholar 

  14. S. Bergman, The Kernel Function and Conformal Mapping (Amer. Math. Soc., Providence, RI, 1970).

    MATH  Google Scholar 

  15. L. A. Aizenberg and A. M. Kytmanov, “On the possibility of holomorphic extension into a domain of function defined on a connected piece of its boundary,” Sb. Math. 72 (2), 467–483 (1992).

    Article  MathSciNet  Google Scholar 

  16. A. A. Shlapunov and N. Tarkhanov, “Bases with double orthogonality in the Cauchy problem for systems with injective symbols,” Proc. London. Math. Soc. 71 (1), 1–54 (1995).

    Article  MathSciNet  Google Scholar 

  17. D. P. Fedchenko and A. A. Shlapunov, “On the Cauchy problem for the elliptic complexes in spaces of distributions,” Complex Var. Elliptic Equ. 59 (5), 651–679 (2014).

    Article  MathSciNet  Google Scholar 

  18. K. O. Makhmudov, O. I. Makhmudov and N. N. Tarkhanov, “A Nonstandard Cauchy Problem for the Heat Equation,” Math. Notes 102 (2), 250–260 (2017).

    Article  MathSciNet  Google Scholar 

  19. Ilya A. Kurilenko and Alexander A. Shlapunov, “On Carleman-type formulas for solutions to the heat equation,” J. Sib. Fed. Univ. Math. Phys. 12 (4), 421–433 (2019).

    Article  MathSciNet  Google Scholar 

  20. V. P. Mikhailov, Partial Differential Equations (Nauka, Moscow, 1976) [in Russian].

    MATH  Google Scholar 

  21. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations and Embedding Theorems (Nauka, Moscow, 1975) [in Russian].

    MATH  Google Scholar 

  22. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéare (Gauthier-Villars, Paris, 1969).

    MATH  Google Scholar 

  23. N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, in Grad. Stud. in Math. (Amer. Math. Soc., Providence, RI, 2008), Vol. 96.

    Book  Google Scholar 

  24. A. Friedman, Partial Differential Equations of Parabolic Type (Prentice-Hall, Englewood Cliffs, NJ, 1964).

    MATH  Google Scholar 

  25. L. I. Hedberg and T. H. Wolff, “Thin sets in nonlinear potential theory,” Ann. Inst. Fourier (Grenoble) 33 (4), 161–187 (1983).

    Article  MathSciNet  Google Scholar 

  26. A. G. Sveshnikov, A. N. Bogolyubov, and V. V. Kravtsov, Lectures on Mathematical Physics (Nauka, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  27. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  28. F. Bowman, Introduction to Bessel Functions (Dover Publ., New York, 1958).

    MATH  Google Scholar 

  29. A. A. Shlapunov, “Spectral decomposition of Green’s integrals and existence of \(W^{s,2}\)-solutions of matrix factorizations of the Laplace operator in a ball,” Rend. Sem. Mat. Univ. Padova 96, 237–256 (1996).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by Sirius University of Science and Technology in the framework of the scientific project “Spectral and functional inequalities of mathematical physics and their applications.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shlapunov.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 111, pp. 778–794 https://doi.org/10.4213/mzm13201.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlapunov, A.A. On the Approximation of Solutions to the Heat Equation in the Lebesgue Class \(L^2\) by More Regular Solutions. Math Notes 111, 782–794 (2022). https://doi.org/10.1134/S0001434622050121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622050121

Keywords

Navigation