Skip to main content
Log in

\(C^*\)-Algebras of Transmission Problems and Elliptic Boundary Value Problems with Shift Operators

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We study the Fredholm solvability for a new class of nonlocal boundary value problems associated with group actions on smooth manifolds. Namely, we consider the case in which the group action is defined on an ambient manifold without boundary and does not preserve the manifold with boundary on which the problem is stated. In particular, the group action does not map the boundary into itself. The orbits of the boundary under the group action split the manifold into subdomains, and this decomposition, being combined with the \(C^*\)-algebra techniques, plays an important role in our approach to the analysis of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. A. B. Antonevich, “Boundary value problems with strong nonlocalness for elliptic equations,” Izv. Math. 34 (1), 1–21 (1990).

    Article  MathSciNet  Google Scholar 

  2. A. Antonevich, Linear Functional Equations. Operator Approach (Birkhäuser, Basel, 1996).

    Book  Google Scholar 

  3. A. Antonevich and A. Lebedev, Functional-Differential Equations. I. \(C^*\)-Theory (Longman, Harlow, 1994).

    MATH  Google Scholar 

  4. A. Antonevich, M. Belousov, and A. Lebedev, Functional Differential Equations. II. \(C^*\)-Applications. Parts 1, 2 (Longman, Harlow, 1998).

    MATH  Google Scholar 

  5. A. B. Antonevich and A. V. Lebedev, “Functional equations and functional operator equations. A \(C^*\)-algebraic approach,” in Proceedings of the St. Petersburg Mathematical Society, Vol. VI, Amer. Math. Soc. Transl. Ser. 2 (Amer. Math. Soc., Providence, RI, 2000), Vol. 199, pp. 25–116.

    Google Scholar 

  6. A. V. Bitsadze and A. A. Samarskii, “On some simple generalizations of linear elliptic boundary problems,” Sov. Math. Dokl. 10 (4), 398–400 (1969).

    MATH  Google Scholar 

  7. G. G. Onanov and A. L. Skubachevskii, “Differential equations with displaced arguments in stationary problems in the mechanics of a deformable body,” Sov. Appl. Mech. 15, 391–397 (1979).

    Article  Google Scholar 

  8. G. G. Onanov and E. L. Tsvetkov, “On the minimum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory,” Russ. J. Math. Phys. 3 (4), 491–500 (1995).

    MathSciNet  MATH  Google Scholar 

  9. G. G. Onanov and A. L. Skubachevskii, “Nonlocal problems in the mechanics of three-layer shells,” Math. Model. Nat. Phenom. 12 (6), 192–207 (2017).

    Article  MathSciNet  Google Scholar 

  10. A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications (Birkhäuser, Basel– Boston–Berlin, 1997).

    MATH  Google Scholar 

  11. A. L. Skubachevskii, “Nonclassical boundary value problems. I,” Journal of Mathematical Sciences 155 (2), 199–334 (2008).

    Article  MathSciNet  Google Scholar 

  12. A. L. Skubachevskii, “Nonclassical boundary value problems. II,” Journal of Mathematical Sciences 166 (4), 377–561 (2010).

    Article  MathSciNet  Google Scholar 

  13. A. L. Skubachevskii and E. L. Tsvetkov, “General boundary-value problems for elliptic differential- difference equations,” in Amer. Math. Soc. Transl. Ser. 2 (Amer. Math. Soc., Providence, RI, 1999), Vol. 193, pp. 153–199.

    MathSciNet  Google Scholar 

  14. L. E. Rossovskii, “Boundary value problems for elliptic functional-differential equations with dilatation and contraction of the arguments,” Trans. Moscow Math. Soc., 185–212 (2001).

    MathSciNet  MATH  Google Scholar 

  15. S. Rempel and B.-W. Schulze, Index Theory of Elliptic Boundary Problems (Akademie-Verlag, Berlin, 1982).

    MATH  Google Scholar 

  16. V. E. Nazaikinskii, A. Yu. Savin, and B. Yu. Sternin, Elliptic Theory and Noncommutative Geometry (Birkhäuser, Basel, 2008).

    MATH  Google Scholar 

  17. A. Savin, E. Schrohe, and B. Sternin, “Uniformization and an index theorem for elliptic operators associated with diffeomorphisms of a manifold,” Russ. J. Math. Phys. 22 (3), 410–420 (2015).

    Article  MathSciNet  Google Scholar 

  18. A. Savin and E. Schrohe, “Analytic and algebraic indices of elliptic operators associated with discrete groups of quantized canonical transformations,” J. Funct. Anal. 278 (5), Paper no. 108400, 45 pp (2020).

    Article  MathSciNet  Google Scholar 

  19. D. Perrot, “Local index theory for operators associated with Lie groupoid actions,” J. Topology Analysis (2021) DOI:10.1142/S1793525321500059.

    Google Scholar 

  20. A. V. Boltachev and A. Yu. Savin, “Elliptic boundary value problems associated with isometric group actions,” J. Pseudo-Differ. Oper. Appl. 12 (4), Paper no. 50, 34 pp (2021).

    Article  MathSciNet  Google Scholar 

  21. L. Boutet de Monvel, “Boundary problems for pseudodifferential operators,” Acta Math. 126, 11–51 (1971).

    Article  MathSciNet  Google Scholar 

  22. E. Schrohe, “A short introduction to Boutet de Monvel’s calculus,” in Approaches to Singular Analysis (Berlin, 1999), Oper. Theory Adv. Appl. (Birkhäuser, Basel, 2001), Vol. 125, pp. 85–116.

    Chapter  Google Scholar 

  23. G. Grubb, Functional Calculus of Pseudo-Differential Boundary Problems (Birkhäuser, Boston, 1986).

    Book  Google Scholar 

  24. J. Dixmier, Les \(C^*\)-algebres et leurs representations (Gauthier-Villars, Paris, 1969).

    MATH  Google Scholar 

  25. G. K. Pedersen, \(C^*\)-Algebras and Their Automorphism Groups, in London Mathematical Society Monographs (Academic Press, London–New York, 1979), Vol. 14.

    MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to express gratitude to A. L. Skubachevskii for many fruitful discussions of nonlocal problems and to the anonymous referee for useful remarks.

Funding

This work was supported by the Russian Foundation for Basic Research under grant 21-51-12006 and by the Deutsche Forschungsgemeinschaft (project SCHR 319/10-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baldare.

Additional information

Translated from Matematicheskie Zametki, 2022, Vol. 111, pp. 692–716 https://doi.org/10.4213/mzm13426.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldare, A., Nazaikinskii, V.E., Savin, A.Y. et al. \(C^*\)-Algebras of Transmission Problems and Elliptic Boundary Value Problems with Shift Operators. Math Notes 111, 701–721 (2022). https://doi.org/10.1134/S0001434622050042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622050042

Keywords

Navigation