Skip to main content
Log in

A Sylvester–Gallai Type Theorem for Abelian Groups

Mathematical Notes Aims and scope Submit manuscript

Cite this article

Abstract

A finite subset \(X\) of an Abelian group \(A\) with respect to addition is called a Sylvester–Gallai set of type \(m\) if \(|X|\ge m\) and, for every distinct \(x_1,\dots,x_{m-1} \in X\), there is an element \(x_m \in X \setminus \{x_1,\dots,x_{m-1}\}\) such that \(x_1+\dots+x_m=o_A\), where \(o_A\) stands for the zero of the group \(A\). We describe all Sylvester–Gallai sets of type \(m\). As a consequence, we obtain the following result: if \(Y\)is a finite set of points on an elliptic curve in \(\mathbb P^2(\mathbb C)\) and

(A) if, for every two distinct points \(x_1,x_2 \in Y\), there is a point \(x_3 \in Y \setminus \{x_1,x_2\}\) collinear to \(x_1\) and \(x_2\), then either \(Y\) is the Hesse configuration of the elliptic curve or \(Y\) consists of three points lying on the same line;

(B) if, for every five distinct points \(x_1,\dots,x_5 \in Y\), there is a point \(x_6 \in Y \setminus \{x_1,\dots,x_{5}\}\) such that \(x_1,\dots,x_6\) lie on the same conic, then \(Y\) consists of six points lying on the same conic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

References

  1. J. J. Sylvester, “Mathematical Question 11851,” Educational Times 59, 59 (1983).

    Google Scholar 

  2. P. Erdős, “Problem 4065,” Amer. Math. Monthly 50, 65 (1943).

    Article  MathSciNet  Google Scholar 

  3. T. Gallai, “Solution to problem number 4065,” Amer. Math. Monthly 51 (3), 169–171 (1944).

    Article  MathSciNet  Google Scholar 

  4. S. A. Naimpally, R. G. Buschman, Kwangil Koh, B. R. Toskey, P. M. Weichsel, K. E. Whipple, D. Rearick, H. F. Mattson, E. F. Assmus Jr., and J.-P. Serre, “Advanced Problems: 5350–5359,” Amer. Math. Monthly 73 (1), 89 (1966).

    Article  MathSciNet  Google Scholar 

  5. L. M. Kelly, “A resolution of the Sylvester–Gallai problem of J.-P. Serre,” Discrete Comput. Geom. 1 (2), 101–104 (1986).

    Article  MathSciNet  Google Scholar 

  6. N. Elkies, L. M. Pretorius, and K. J. Swanepoel, “Sylvester–Gallai theorems for complex numbers and quaternions,” Discrete Comput. Geom. 35 (3), 361–373 (2006).

    Article  MathSciNet  Google Scholar 

  7. J. A. Wiseman and P. R. Wilson, “A Sylvester theorem for conic sections,” Discrete Comput. Geom. 3 (4), 295–305 (1988).

    Article  MathSciNet  Google Scholar 

  8. S. Tabachnikov and V. Timorin, “Sylvester’s line (end),” Kvant, No. 6, 6–9 (2009).

    Google Scholar 

  9. P. Keevash, The Existence of Designs, arXiv: 1401.3665 (2014).

  10. D. Král’, E. Máčajová, A. Pór, and J.-S. Sereni, “Characterisation results for Steiner triple systems and their application to edge-colourings of cubic graphs,” Canad. J. Math. 62 (2), 355–381 (2010).

    Article  MathSciNet  Google Scholar 

  11. K. Petelczyc, M. Prażmowska, K. Prażmowski, and M. Żynel, “A note on characterizations of affine and Hall triple systems,” Discrete Math. 312 (15), 2394–2396 (2012).

    Article  MathSciNet  Google Scholar 

  12. M. J. Grannell, T. S. Griggs, and E. Mendelsohn, “A small basis for four-line configurations in Steiner triple systems,” J. Combin. Des. 3 (1), 51–59 (1995).

    Article  MathSciNet  Google Scholar 

  13. D. R. Stinson and Y. J. Wei, “Some results on quadrilaterals in Steiner triple systems,” Discrete Math. 105 (1-3), 207–219 (1992).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. K. Nilov.

Additional information

Translated from Matematicheskie Zametki, 2021, Vol. 110, pp. 99-109 https://doi.org/10.4213/mzm12761.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilov, F.K., Polyanskii, A.A. A Sylvester–Gallai Type Theorem for Abelian Groups. Math Notes 110, 110–117 (2021). https://doi.org/10.1134/S0001434621070117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434621070117

Keywords

Navigation