Skip to main content

Certain Polynomial Stochastic Operators

This is a preview of subscription content, access via your institution.

References

  1. 1

    Yu. I. Lyubich, Mathematical Structures in Population Genetics, Biomathematics, 22 (Springer-Verlag, Berlin, 1992).

    Book  Google Scholar 

  2. 2

    N. N. Ganikhodjaev, R. N. Ganikhodjaev, and U. U. Jamilov (Zhamilov), “Quadratic stochastic operators and zero-sum game dynamics,” Ergod. Th. and Dynam. Sys. 35 (5), 1443–1473 (2015).

    MathSciNet  Article  Google Scholar 

  3. 3

    R. N. Ganikhodzhaev, “Quadratic stochastic operators, Lyapunov functions and tournaments,” Sb. Math. 76 (2), 489–506 (1993).

    MathSciNet  Article  Google Scholar 

  4. 4

    R. N. Ganikhodzhaev, “Map of fixed points and Lyapunov functions for one class of discrete dynamical systems,” Math. Notes 56 (5), 1125–1131 (1994).

    MathSciNet  Article  Google Scholar 

  5. 5

    R. Ganikhodzhaev, F. Mukhamedov, and U. Rozikov, “Quadratic stochastic operators and processes: results and open problems,” Infin. Dimens. Anal. Quan. Probab. Relat. Top. 14 (2), 279–335 (2011).

    MathSciNet  Article  Google Scholar 

  6. 6

    U. U. Jamilov, “On a family of strictly non-volterra quadratic stochastic operators,” Jour. Phys. Conf. Ser. 697, 012013 (2016).

    Article  Google Scholar 

  7. 7

    U. U. Jamilov, M. Scheutzow, and M. Wilke-Berenguer, “On the random dynamics of Volterra quadratic operators,” Ergod. Th. and Dynam. Sys. 37 (1), 228–243 (2017).

    MathSciNet  Article  Google Scholar 

  8. 8

    H. Kesten, “Quadratic transformations: A model for population growth. I,” Advances in Appl. Probability 2 (1), 1–82 (1970).

    MathSciNet  Article  Google Scholar 

  9. 9

    F. M. Mukhamedov, U. U. Jamilov, and A. T. Pirnapasov, “On non-ergodic uniform Lotka-Volterra operators,” Math. Notes 105 (2), 258–264 (2019).

    MathSciNet  Article  Google Scholar 

  10. 10

    U. A. Rozikov and U. U. Jamilov, “\(F-\) quadratic stochastic operators,” Math. Notes 83 (3–4), 554–559 (2008).

    MathSciNet  Article  Google Scholar 

  11. 11

    U. A. Rozikov and U. U. Jamilov, “Volterra quadratic stochastic operators of a two-sex population,” Ukrainian Math. J. 63 (7), 1136–1153 (2011).

    MathSciNet  Article  Google Scholar 

  12. 12

    U. A. Rozikov and U. U. Jamilov, “On the dynamics of strictly non-Volterra quadratic stochastic operators on a two-dimensional simplex,” Sb. Math. 200 (9), 1339–1351 (2009).

    MathSciNet  Article  Google Scholar 

  13. 13

    M. Scheutzow and M. Wilke-Berenguer, “Random delta-hausdorff-attractors,” Discrete and Continuous Dynamical Systems – B 23 (3), 1199–1217 (2018).

    MathSciNet  Article  Google Scholar 

  14. 14

    R. R. Davronov, U. U. Jamilov, and M. Ladra, “Conditional cubic stochastic operator,” J. Difference Equ. Appl. 21 (12), 1163–1170 (2015).

    MathSciNet  Article  Google Scholar 

  15. 15

    U. U. Jamilov, A. Yu. Khamraev, and M. Ladra, “On a Volterra cubic stochastic operator,” Bull. Math. Biol. 80 (2), 319–334 (2018).

    MathSciNet  Article  Google Scholar 

  16. 16

    U. U. Jamilov and A. Reinfelds, “On constrained Volterra cubic stochastic operators,” Jour. Diff. Eq. Appl. 26 (2), 261–274 (2020).

    MathSciNet  Article  Google Scholar 

  17. 17

    U. A. Rozikov and A. Yu. Khamraev, “On cubic operators defined on finite-dimensional simplices,” Ukrainian Math. J. 56 (10), 1699–1711 (2004).

    MathSciNet  Article  Google Scholar 

  18. 18

    U. A. Rozikov and A. Yu. Khamraev, “On construction and a class of non-Volterra cubic stochastic operators,” Nonlinear Dyn. Syst. Theory 14 (1), 92–100 (2014).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to U. U. Jamilov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jamilov, U.U. Certain Polynomial Stochastic Operators. Math Notes 109, 828–831 (2021). https://doi.org/10.1134/S000143462105014X

Download citation

Keywords

  • quadratic stochastic operator
  • Volterra operator
  • regular operator