Skip to main content
Log in

Direct and Inverse Problems for the Matrix Sturm–Liouville Operator with General Self-Adjoint Boundary Conditions

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The matrix Sturm–Liouville operator on a finite interval with boundary conditions in general self-adjoint form and with singular potential of class \(W_2^{-1}\) is studied. This operator generalizes Sturm–Liouville operators on geometrical graphs. We investigate structural and asymptotical properties of the spectral data (eigenvalues and weight matrices) of this operator. Furthermore, we prove the uniqueness of recovering the operator from its spectral data, by using the method of spectral mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Marchenko, Sturm–Liouville Operators and Their Applications (Naukova Dumka, Kiev, 1977) [in Russian].

    MATH  Google Scholar 

  2. B. M. Levitan and I. S. Sargsjan, Sturm–Liouville and Dirac Operators (Springer, Dordrecht, 1991) [Russian transl.].

    Book  Google Scholar 

  3. G. Freiling and V. Yurko, Inverse Sturm–Liouville Problems and Their Applications (Nova Science Publishers, Huntington, NY, 2001).

    MATH  Google Scholar 

  4. P. Kuchment, “Quantum graphs. I. Some basic structures,” Waves Random Media 14 (1), S107–S128 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu. V. Pokorny, O. M. Penkin, V. L. Pryadiev et al., Differential Equations on Geometrical Graphs (Moscow, Fizmatlit, 2005) [in Russian].

    Google Scholar 

  6. G. Berkolaiko, R. Carlson, S. Fulling, and P. Kuchment, Quantum Graphs and Their Applications, in Contemp. Math. (Amer. Math. Soc., Providence, RI, 2006), Vol. 415.

    Book  MATH  Google Scholar 

  7. M. Nowaczyk, Inverse Problems for Graph Laplacians (Doctoral Thesis in Mathematical Sciences, Lund, 2007).

    MATH  Google Scholar 

  8. A. M. Savchuk and A. A. Shkalikov, “Sturm–Liouville operators with singular potentials,” Math. Notes 66 (6), 741–753 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. M. Savchuk, “On the eigenvalues and eigenfunctions of the Sturm–Liouville operator with a singular potential,” Math. Notes 69 (2), 245–252 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. M. Savchuk and A. A. Shkalikov, “Trace formula for Sturm–Liouville operators with singular potentials,” Math. Notes 69 (3), 387–400 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Korotyaev, “Characterization of the spectrum of Schrödinger operators with periodic distributions,” International Mathematics Research Notices 2003 (37), 2019–2031 (2003).

    Article  MATH  Google Scholar 

  12. R. O. Hryniv and Y. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials,” Inverse Problems 19 (3), 665–684 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. O. Hryniv and Y. V. Mykytyuk, “Transformation operators for Sturm–Liouville operators with singular potentials,” Math. Phys. Anal. Geom. 7, 119–149 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. O. Hryniv and Y. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials. II. Reconstruction by two spectra,” North-Holland Mathematics Studies 197, 97–114 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. O. Hryniv and Y. V. Mykytyuk, “Half-inverse spectral problems for Sturm–Liouville operators with singular potentials,” Inverse problems 20 (5), 1423–1444 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. M. Savchuk and A. A. Shkalikov, “Inverse problem for Sturm–Liouville operators with distribution potentials: Reconstruction from two spectra,” Russ. J. Math. Phys. 12 (4), 507–514 (2005).

    MathSciNet  MATH  Google Scholar 

  17. P. Djakov and B. N. Mityagin, “Spectral gap asymptotics of one-dimensional Schrödinger operators with singular periodic potentials,” Integral Transforms Spec. Funct. 20 (3–4), 265–273 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. O. Hryniv, “Analyticity and uniform stability in the inverse singular Sturm–Liouville spectral problem,” Inverse Problems 27 (6), 065011 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. K. A. Mirzoev, “Sturm–Liouville operators,” Trans. Moscow Math. Soc. 75, 281–299 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  20. N. J. Guliyev, “Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter,” J. Math. Phys. 60, 063501 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  21. V. G. Papanicolaou, “Trace formulas and the behaviour of large eigenvalues,” SIAM J. Math. Anal. 26 (1), 218–237 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Carlson, “Large eigenvalues and trace formulas for matrix Sturm–Liouville problems,” SIAM J. Math. Anal. 30 (5), 949–962 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  23. O. A. Veliev, “Non-self-adjoint Sturm–Liouville operators with matrix potentials,” Math. Notes 81 (4), 440–448 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  24. D. M. Polyakov, “On the spectral characteristics of non-self-adjoint fourth-order operators with matrix coefficients,” Math. Notes 105 (4), 630–635 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Carlson, “An inverse problem for the matrix Schrödinger equation,” J. Math. Anal. Appl. 267, 564–575 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. M. Malamud, “Uniqueness of the matrix Sturm–Liouville equation given a part of the monodromy matrix, and Borg type results,,” in Sturm–Liouville Theory (Birkhäuser, Basel, 2005), pp. 237–270.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. M. Chabanov, “Recovering the M-channel Sturm–Liouville operator from M+1 spectra,” J. Math. Phys. 45 (11), 4255–4260 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. A. Yurko, “Inverse problems for matrix Sturm–Liouville operators,” Russ. J. Math. Phys. 13 (1), 111–118 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  29. C.-T. Shieh, “Isospectral sets and inverse problems for vector-valued Sturm–Liouville equations,” Inverse Problems 23, 2457–2468 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  30. X.-C. Xu, “Inverse spectral problem for the matrix Sturm–Liouville operator with the general separated self-adjoint boundary conditions,” Tamkang J. Math. 50 (3), 321–336 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  31. V. Yurko, “Inverse problems for the matrix Sturm–Liouville equation on a finite interval,” Inverse Problems 22, 1139–1149 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Chelkak and E. Korotyaev, “Weyl-Titchmarsh functions of vector-valued Sturm–Liouville operators on the unit interval,” J. Func. Anal. 257, 1546–1588 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  33. Ya. V. Mykytyuk and N. S. Trush, “Inverse spectral problems for Sturm–Liouville operators with matrix-valued potentials,” Inverse Problems 26 (1), 015009 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Bondarenko, “Spectral analysis for the matrix Sturm–Liouville operator on a finite interval,” Tamkang J. Math. 42 (3), 305–327 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  35. N. P. Bondarenko, “An inverse problem for the non-self-adjoint matrix Sturm–Liouville operator,” Tamkang J. Math. 50 (1), 71–102 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Harmer, “Inverse scattering for the matrix Schrödinger operator and Schrödinger operator on graphs with general self-adjoint boundary conditions,” ANZIAM J. 43, 1–8 (2002).

    MATH  Google Scholar 

  37. T. Aktosun and R. Weder, Direct and Inverse Scattering for the Matrix Schrödinger Equation, in Applied Mathematical Sciences (Springer, Cham, 2021), Vol. 203.

    MATH  Google Scholar 

  38. Z. S. Agranovich and V. A. Marchenko, The Inverse Problem of Scattering Theory (Gordon and Breach, New York, 1963).

    MATH  Google Scholar 

  39. J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, “Supersymmetry and Schrödinger-type operators with distributional matrix-valued potentials,” J. Spectral Theory 4 (4), 715–768 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Eckhardt, F. Gesztesy, R. Nichols, A. Sakhnovich and G. Teschl, “Inverse spectral problems for Schrödinger-type operators with distributional matrix-valued potentials,” Differential Integral Equations 28 (5/6), 505–522 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Weidmann, Spectral Theory of Ordinary Differential Operators, in Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1987).

    Book  MATH  Google Scholar 

  42. K. A. Mirzoev and T. A. Safonova, “Singular Sturm–Liouville operators with distribution potential on spaces of vector functions,” Doklady Mathematics 84 (3), 791–794 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  43. K. A. Mirzoev and T. A. Safonova, “On the deficiency index of the vector-valued Sturm–Liouville operator,” Math. Notes 99 (2), 290–303 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  44. N. P. Bondarenko, “Solving an inverse problem for the Sturm–Liouville operator with singular potential by Yurko’s method,” Tamkang J. Math. 52 (1), 1–30 (2021).

    Article  MathSciNet  Google Scholar 

  45. N. P. Bondarenko, Inverse Problem Solution and Spectral Data Characterization for the Matrix Sturm–Liouville Operator with Singular Potential, arXiv: https://arxiv.org/abs/2007.07299 (2020).

  46. M. A. Naimark, Linear Differential Operators (Nauka, Moscow, 1968) [in Russian].

    MATH  Google Scholar 

  47. N. P. Bondarenko, “Spectral analysis of the Sturm–Liouville operator on the star-shaped graph,” Math. Meth. Appl. Sci. 43 (2), 471–485 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  48. G. V. Golub and C. F. Van Loan, Matrix Computations (The Johns Hopkins University Press, Baltimore and London, 1996).

    MATH  Google Scholar 

  49. O. Christensen, “An Introduction to Frames and Riesz Bases,” in Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, 2003).

  50. S. A. Buterin, C.-T. Shieh, and V. A. Yurko, “Inverse spectral problems for non-selfadjoint second-order differential operators with Dirichlet boundary conditions,” Boundary Value Problems 2013, 180 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation under grant 19-71-00009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Bondarenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, N.P. Direct and Inverse Problems for the Matrix Sturm–Liouville Operator with General Self-Adjoint Boundary Conditions. Math Notes 109, 358–378 (2021). https://doi.org/10.1134/S0001434621030044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434621030044

Keywords

Navigation