Skip to main content
Log in

Third Boundary-Value Problem in the Half-Strip for the \(B\)-Parabolic Equation

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The third boundary-value problem in the half-strip for a partial differential equation with Bessel operator is studied. Existence and uniqueness theorems are proved. The representation of the solution is found in terms of the Laplace convolution of the exponential function and Mittag-Leffler type function with power multipliers. Uniqueness is proved for the class of bounded functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Kipriyanov, V. V. Katrakhov, and V. M. Lyapin, “On boundary value problems in domains of general type for singular parabolic systems of equations,” Dokl. Akad. Nauk SSSR 230 (6), 1271–1274 (1976).

    MathSciNet  MATH  Google Scholar 

  2. I. A. Kipriyanov, Singular elliptic boundary-value problems (Nauka, Moscow, 1997) [in Russian].

    MATH  Google Scholar 

  3. A. M. Nakhushev, Fractional Calculus and Its Application (Fizmatlit, Moscow, 2003) [in Russian].

    MATH  Google Scholar 

  4. A. M. Nakhushev, “The correct formulation of boundary value problems for parabolic equations with a characteristic form of variable sign,” Differ. Uravn. 9 (1), 130–135 (1973).

    MathSciNet  Google Scholar 

  5. V. Alexiades, “Generalized axially symmetric heat potentials and singular parabolic initial boundary-value problems,” Arch. Rational Mech. Anal. 79 (4), 325–350 (1982).

    Article  MathSciNet  Google Scholar 

  6. D. Colton, “Cauchy’s problem for a singular parabolic partial differential equation,” J. Differential Equations 8 (2), 250–257 (1970).

    Article  MathSciNet  Google Scholar 

  7. S. A. Tersenov, Parabolic Equations with Varying Time Direction (Nauka, Sibirsk. Otdel., Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  8. M. I. Matiichuk, Parabolic Singular Boundary-Value Problems (Inst. Mat. NAN Ukraïni, Kiïv, 1999) [in Russian].

    Google Scholar 

  9. M. Gevrey, “Sur les équations aux dérivées partielles du type parabolique,” Journ. de Math. 9 (6), 305–476 (1913).

    Google Scholar 

  10. M. Gevrey, “Sur les équations aux dérivées partielles du type parabolique (suite),” Journ. de Math. 10 (6), 105–148 (1914).

    MATH  Google Scholar 

  11. O. Arena, “On a singular parabolic equation related to axially symmetric heat potentials,” Ann. Mat. Pura Appl. (4) 105, 347–393 (1975).

    Article  MathSciNet  Google Scholar 

  12. M. Giona and H. E. Roman, “Fractional diffusion equation on fractals: one-dimensional case and asymptotic behavior,” J. Phys. A 25 (8), 2093–2105 (1992).

    Article  MathSciNet  Google Scholar 

  13. C. D. Pagani, “On the parabolic equation \(\operatorname{sgn}(x)x^pu_y-u_{xx}=0\) and a related one,” Ann. Mat. Pura Appl. (4) 99, 333–339 (1974).

    Article  MathSciNet  Google Scholar 

  14. O. Arena, “On a degenerate elliptic-parabolic equation,” Comm. Partial Differential Equations 3 (11), 1007–1040 (1978).

    Article  MathSciNet  Google Scholar 

  15. Yu. P. Gor’kov, “Representation of a solution to a boundary value problem in half-space for the stationary equation of Brownian motion,” Num. Meth. Prog. 5 (1), 118–123 (2004).

    Google Scholar 

  16. Yu. P. Gor’kov, “Asymptotic behavior of a solution to the problem of Brownian motion,” Num. Meth. Prog. 4 (1), 19–25 (2003).

    Google Scholar 

  17. Yu. P. Gor’kov, “Construction of the fundamental solution to a parabolic equation with degeneracy,” Num. Meth. Prog. 6 (1), 66–70 (2005).

    Google Scholar 

  18. S. Kepinski, “Über die Differentialgleichung \(\frac{\partial^2 z}{\partial x^2} +\frac{m+1}{x}\frac{\partial z}{\partial x} -\frac{n}{x}\frac{\partial z}{\partial t}=0\),” Math. Ann. 61 (3), 397–405 (1905).

    Article  MathSciNet  Google Scholar 

  19. S. Kepinski, “Integration der Differentialgleichung \(\frac{\partial^2j}{\partial\xi^2} -\frac{1}{\xi}\frac{\partial j}{\partial t}=0\),” Krakau Anz., 198–205 (1905).

    MATH  Google Scholar 

  20. W. Myller-Lebedeff, “Über die Anwendung der Integralgleichungen in einer parabolischen Randwertaufgabe,” Math. Ann. 66 (3), 325–330 (1908).

    Article  MathSciNet  Google Scholar 

  21. B. O’Shaugnessy and I. Procaccia, “Analytical solutions for diffusion on fractal objects,” Phys. Rev. Lett. 54, 455–458 (1985).

    Article  Google Scholar 

  22. A. B. Muravnik, “Functional differential parabolic equations: integral transformations and qualitative properties of solutions of the Cauchy problem,” Journal of Mathematical Sciences 216 (3), 345–496 (2016).

    Article  MathSciNet  Google Scholar 

  23. V. V. Katrakhov and S. M. Sitnik, “The transformation operator method and boundary-value problems for singular elliptic equations,” in Singular Differential Equations, Sovrem. Mat. Fundam. Napravl. (PFUR, Moscow, 2018), Vol. 64, Iss. 2, pp. 211–426 [in Russian].

    Google Scholar 

  24. S. M. Sitnik and É. L. Shishkina, The Transformation Operator Method for Differential Equations with Bessel Operators (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  25. A. A. Samarskii, Introduction to the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  26. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  27. H. Bateman and A. Erdélyi and, Higher Transcendental Functions. Hypergeometric Function. Legendre Functions (McGraw–Hill, New York–Toronto–London, 1953), Vol. 1.

    MATH  Google Scholar 

  28. N. N. Lebedev, Special functions and Their Applications (Fizmatlit, Moscow–Leningrad, 1963) [in Russian].

    Google Scholar 

  29. M. M. Dzhrbashyan, Integral Transformations and Representations of Functions in the Complex Domain (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  30. A. Yu. Popov and A. M. Sedletskii, “Distribution of roots of Mittag-Leffler functions,” Journal of Mathematical Sciences 190 (2), 209–409 (2013).

    Article  MathSciNet  Google Scholar 

  31. S. A. Tersenov, Introduction to the Theory of Parabolic Equations with Varying Time Direction (Inst. Mat. SB AS USSR, Novosibirsk, 1982) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Khushtova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khushtova, F.G. Third Boundary-Value Problem in the Half-Strip for the \(B\)-Parabolic Equation. Math Notes 109, 292–301 (2021). https://doi.org/10.1134/S0001434621010338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434621010338

Keywords

Navigation