Skip to main content
Log in

Multiplicity Results of a Nonlocal Problem Involving Concave-Convex Nonlinearities

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

In this work, we investigate the following fractional \(p\)-Laplacian equation involving a concave-convex nonlinearities as follows, \({\rm (P_\lambda)} \begin{cases} (-\Delta)_p^s u = \lambda u^{q} + u^{r} &\mbox{in }\Omega, \\ u>0 & \text{in }\Omega, \\ u = 0 &\mbox{in }\mathbb{R}^N\setminus\Omega, \end{cases} \) where \(\Omega\subset\mathbb{R}^N\), \(N\geq 2\) is a bounded domain with \(C^{1,1}\) boundary \(\partial\Omega,\) \(\lambda >0\), \(1<p<\infty,\) \(s\in (0,1)\) such that \(N\geq s p,\) \(0<q<p-1<r\leq p^*_s-1,\) \(p^*_s = \frac{Np}{N-s p}\) is the fractional critical Sobolev exponent and the nonlinear nonlocal operator \((-\Delta)^s_p u\) with \(s\in (0,1)\) is the \(p\)-fractional Laplacian defined on smooth functions by \((-\Delta)^s_p u(x)=2 \underset{\epsilon\searrow 0}{\lim}\int_{\mathbb{R}^{N}\backslash B_\epsilon}\frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+ ps}}\, dy,\qquad x\in \mathbb{R}^N. \) We use variational methods, in order to show the existence of multiple positive solutions to the problem \((P_\lambda)\) for different value of \(\lambda.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Applebaum, Lévy Processes and Stochastic Calculus, Camb. Stud. Adv. Math. (Cambridge University Press, Cambridge, 2009), Vol. 116.

    Book  Google Scholar 

  2. A. Cotsiolis and N. Tavoularis, “Best constants for Sobolev inequalities for higher order fractional derivatives,” J. Math. Anal. Appl. 295, 225–236 (2004).

    Article  MathSciNet  Google Scholar 

  3. D. Averna, S. Tersian, and E. Tornatore, “On the existence and multiplicity of solutions for Dirichlet’s problem for fractional equations,” Fract. Calc. Appl. Anal. 19 (1), 253–266 (2016).

    Article  MathSciNet  Google Scholar 

  4. B. Barrios, E. Coloradoc, R. Servadei, and F. Soriaa, “A critical fractional equation with concave-convex power nonlinearities,” Ann. Inst. H. Poincaré 32, 875–900 (2015).

    Article  MathSciNet  Google Scholar 

  5. G. Bonanno, R. Rodríguez-López, and S. Tersian, “Existence of solutions to boundary value problem for impulsive fractional differential equations,” Fract. Calc. Appl. Anal. 17 (3), 717–744 (2014).

    Article  MathSciNet  Google Scholar 

  6. B. Brandle, E. Colorado, A. de Pablo, and U. Sanchez, “A concave-convex elliptic problem involving the fractional Laplacian,” Proc. Roy. Soc. Edinburgh. Sec. A 143, 39–71 (2013).

    Article  MathSciNet  Google Scholar 

  7. A. Ghanmi and K. Saoudi, “The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator,” Fractional Differential Calculus 6 (2), 201–217 (2016).

    Article  MathSciNet  Google Scholar 

  8. K. Saoudi, “A critical Fractional elliptic equation with singular nonlinearities,” Fractional Calculus and Applied Analysis 20 (6), 1507–1530 (2017).

    Article  MathSciNet  Google Scholar 

  9. A. Iannizzotto, S. Liu, K. Perera, and M. Squassina, “Existence results for fractional \(p\)-Laplacian problems via Morse theory,” Adv. Calc. Var. 9 (2), 101—125 (2016).

    Article  MathSciNet  Google Scholar 

  10. K. Perera, M. Squassina, and Y. Yang, “Bifurcation and multiplicity results for critical fractional \(p-\)Laplacian problems,” Mathematische Nachrichten 289, 332–342 (2016).

    Article  MathSciNet  Google Scholar 

  11. S. Mosconi, K. Perera, M. Squassina, and Y. Yang, “A Brezis Nirenberg result for the fractional \(p\)-Laplacian,” Calc. Var. 55, 105–130 (2016).

    Article  Google Scholar 

  12. A. Ghanmi and K. Saoudi, “A multiplicity results for a singular problem involving the fractional \(p\)-Laplacian operator,” Complex. Var. Elliptic Equ. 61, 1199–1216 (2016).

    Article  MathSciNet  Google Scholar 

  13. A. Ambrosetti, H. Brezis, and G. Cerami, “Combined effects of concave and convex nonlinearities in some elliptic problems,” J. Funct. Anal. 122 (2), 519–543 (1994).

    Article  MathSciNet  Google Scholar 

  14. J. P. García Azorero and I. Peral Alonso, “Some results about the existence of a second positive solution in a quasilinear critical problem,” Indiana Univ. Math. J. 43, 941–957 (1994).

    Article  MathSciNet  Google Scholar 

  15. A. Ambrosetti, J. Garcia Azorero, and I. Peral, “Multiplicity results for some nonlinear elliptic equations,” J. Funct. Anal. 137 (1), 219—242 (1996).

    Article  MathSciNet  Google Scholar 

  16. Z. Guo and Z. Zhang, “\(W^{1,p}\) versus \(C^1\) local minimizers and multiplicity results for quasilinear elliptic equations,” J. Math. Anal. Appl. 2863, 32–50 (2003).

    Article  MathSciNet  Google Scholar 

  17. K. Saoudi, “Existence and non-existence of positive solutions for quasilinear elliptic problem,” Abstract and Applied Analysis Art. ID 275748, 9 pp (2012).

    MATH  Google Scholar 

  18. G. Tarantello, “On nonhomogeneous elliptic equations involving critical Sobolev exponent,” Ann. Inst. H. Poincaré, Anal. Non Linéaire 9, 281–304 (1992).

    Article  MathSciNet  Google Scholar 

  19. H. Brézis and E. Lieb, “A relations between pointwise convergence of functions and convergence of functionals,” Proc. Amer. Math. Soc. 88 (3), 486–490 (1983).

    Article  MathSciNet  Google Scholar 

  20. L. Brasco and G. Franzina, “Convexity properties of Dirichlet integrals and Picone-type inequalities,” Kodai Math. J. 37, 769–799 (2014).

    Article  MathSciNet  Google Scholar 

  21. D. G. de Figueiredo, J. P. Gossez, and P. Ubilla, “Local “superlinearity” and “sublinearity” for the \(p\)-Laplacian,” J. Funct. Anal. 257 (3), 721–752 (2009).

    Article  MathSciNet  Google Scholar 

  22. E. Lindgren and P. Lindqvist, “Fractional eigenvalues,” Calc. Var. Part. Diff. Equa. 49, 795—826 (2013).

    MathSciNet  MATH  Google Scholar 

  23. K. Saoudi, “On vs. local minimizers for a critical functional related to fractional \(p\)-Laplacian,” Appl. Anal. 96 (9), 1586–1595 (2017).

    Article  MathSciNet  Google Scholar 

  24. E. Di Nezza, G. Palatucci, and E. Valdinoci, “Hitchhiker’s guide to the fractional Sobolev spaces,” Bull. Sci. Math. 136, 521–573 (2012).

    Article  MathSciNet  Google Scholar 

  25. N. Ghoussoub and D. Preiss, “A general mountain-pass principle for locating and classifying critical points,” Ann. Inst. H. Poincaré, Anal. Non Linéaire 6 (5), 321–330 (1989).

    Article  MathSciNet  Google Scholar 

  26. L. Brasco, E. Lindgren, and E. Parini, “The fractional Cheeger problem,” Interfaces and Free Boundaries 16 (2), 419–458 (2014).

    Article  MathSciNet  Google Scholar 

  27. A. Iannizzotto, S. Mosconi, and M. Squassina, “Global Hölder regularity for the fractional \(p\)-Laplacian,” Rev. Mat. Iberoam. 32, 1353–1392 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to express gratitude to the referee for valuable remarks which contributed to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Daoues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoues, A., Hammami, A. & Saoudi, K. Multiplicity Results of a Nonlocal Problem Involving Concave-Convex Nonlinearities. Math Notes 109, 192–207 (2021). https://doi.org/10.1134/S0001434621010235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434621010235

Keywords

Navigation