Skip to main content
Log in

On Potential Functions Associated with Eigenfunctions of the Discrete Sturm–Liouville Operator

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Potential functions associated with eigenfunctions of the discrete Sturm–Liouville operator are studied in a loaded space. On the basis of representations of kernels with respect to the corresponding orthogonal polynomials, an estimate for the growth of potential functions is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Yu. M. Berezanskii, Expansions in Eigenfunctions of Self-Adjoint Operators (Naukova Dumka, Kiev, 1965) [in Russian].

    MATH  Google Scholar 

  2. E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  3. W. Van Assche and A. P. Magnus, “Sieved orthogonal polynomials and discrete measures with jumps in an interval,” Proc. Amer. Math. Soc. 102 (1), 163–173 (1989).

    Article  MathSciNet  Google Scholar 

  4. D. S. Lubinsky, “Singularly continuous measures on Nevai’s class \(M\),” Proc. Amer. Math. Soc. 111 (2), 403–408 (1992).

    MathSciNet  Google Scholar 

  5. E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials,” Math. USSR-Sb. 32 (2), 199–213 (1977).

    Article  MathSciNet  Google Scholar 

  6. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Izd. Moskov. Univ., Moscow, 2004) [in Russian].

    Google Scholar 

  7. J. J. Guadalupe, M. Perez, F. G. Ruiz and J. L. Varona, “Weighted norm inequalities for polynomial expansions associated to some measures with mass points,” Constr. Approx. 12 (No. 3), 341–360 (1996).

    Article  MathSciNet  Google Scholar 

  8. A. S. Kostenko and M. M. Malamud, “On the one-dimensional Schrödinger operator with \(\delta\)-interactions,” Funct. Anal. Appl. 44 (2), 151–155 (2010).

    Article  MathSciNet  Google Scholar 

  9. I. B. Sharapudinov, Mixed Series in Orthogonal Polynomials (Daghestan. Nauchn, Tsentr RAN, Makhachkala, 2004) [in Russian].

    Google Scholar 

  10. S. Albeverio, Z. Brzeźniak, and L. Dabrowski, “Fundamental solution of the heat and Schrödinger equations with point interaction,” J. Funct. Anal. 128, 220–254 (1995).

    Article  Google Scholar 

  11. R. Koekoek, “Differential equations for symmetric generalized ultraspherical polynomials,” Trans. Amer. Math. Soc. 345 (1), 47–72 (1994).

    Article  MathSciNet  Google Scholar 

  12. J. Koekoek and R. Koekoek, “Differential equations for general Jacobi polynomials,” J. Comput. Appl. Math. 126, 1–31 (2000).

    Article  MathSciNet  Google Scholar 

  13. R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience Publ., New York, 1953), Vol. 1.

    MATH  Google Scholar 

  14. M. A. Aizerman, È. M. Braverman, and L. I. Rozonoèr, “Extrapolation problems of automatic control and the method of potential functions,” in Proceedings of the International Congress of Mathematicians (Mir, Moscow, 1968), pp. 691–711 [in Russian].

    MathSciNet  MATH  Google Scholar 

  15. M. A. Aizerman, È. M. Braverman, and L. I. Rozonoèr, “Theoretical foundation of potential functions method in pattern recognition,” Avtomat. i Telemekh. 25 (6), 917–936 (1964).

    Google Scholar 

  16. Yu. M. Berezanskii and A. A. Kalyuzhnyi, Harmonic Analysis in Hypercomplex Systems (Naukova Dumka, Kiev, 1992) [in Russian].

    Google Scholar 

  17. G. Gasper, “Banach algebra for Jacobi series and positivity of a kernel,” Ann. of Math. (2) 95 (2), 261–280 (1972).

    Article  MathSciNet  Google Scholar 

  18. B. M. Levitan, Generalized Shift Operators and Some of Their Applications (Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1962) [in Russian].

    Google Scholar 

  19. M. V. Maslennikov, “The Milne problem with anisotropic scattering,” Proc. Steklov Inst. Math. 97, 1–161 (1968).

    MathSciNet  MATH  Google Scholar 

  20. B. P. Osilenker, “A generalized shift operator and convolution structure for orthogonal polynomials,” Dokl. Math. 37 (1), 217–221 (1988).

    MathSciNet  MATH  Google Scholar 

  21. B. P. Osilenker, “Generalized product formula for orthogonal polynomials,” in Applications of Hypergroups and Related Measure Algebras, Contemp. Math. (Amer. Math. Soc., Providence, RI, 1995), Vol. 183, pp. 269–285.

    Article  MathSciNet  Google Scholar 

  22. B. P. Osilenker, “The representation of the trilinear kernel in general orthogonal polynomials and some applications,” J. Approx. Theory 67, 93–114 (1991).

    Article  MathSciNet  Google Scholar 

  23. S. Z. Rafal’son, “On polynomials which are orthogonal with respect to a weight,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 146–154 (1965).

    MathSciNet  MATH  Google Scholar 

  24. A. Foulquié Moreno, F. Marcellan and B. P. Osilenker, “Estimates for polynomials orthogonal with respect to some Gegenbauer–Sobolev type inner product,” J. Inequal. Appl. 3, 401–419 (1999).

    MathSciNet  MATH  Google Scholar 

  25. T. H. Koonwinder, “Orthogonal polynomials with weight function \((1-x)^\alpha(1+x)^\beta+M\delta(x+1)+ N\delta(x-1)\),” Canad. Math. Bull. 27 (2), 205–214 (1984).

    Article  MathSciNet  Google Scholar 

  26. A. M. Krall, “Orthogonal polynomials satisfying fourth order differential equations,” Proc. Roy. Soc. Edinburgh Sec. A 87 (3-4), 271–288 (1981).

    Article  MathSciNet  Google Scholar 

  27. L. L. Littlejohn, “The Krall polynomials: a new class of orthogonal polynomials,” Quaestiones Math. 5, 255–265 (1982).

    Article  MathSciNet  Google Scholar 

  28. A. B. Mingarelli and A. M. Krall, “Jacobi-type polynomials under an infinite inner product,” Proc. Roy. Soc. Edinburgh Sec. A 90 (1-2), 147–153 (1981).

    Article  Google Scholar 

  29. B. P. Osilenker, “Some extremal problems for algebraic polynomials in loaded spaces,” Russian Math. (Iz. VUZ) 54 (2), 46–56 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Osilenker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osilenker, B.P. On Potential Functions Associated with Eigenfunctions of the Discrete Sturm–Liouville Operator. Math Notes 108, 842–853 (2020). https://doi.org/10.1134/S0001434620110267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434620110267

Keywords

Navigation