Skip to main content
Log in

On Disjointly Homogeneous Orlicz–Lorentz Spaces

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

A characterization of disjointly homogeneous Orlicz–Lorentz function spaces \(\Lambda_{\varphi,w}\) is obtained. It is used to find necessary and sufficient conditions for an analog of the classical Dunford–Pettis theorem about the equi-integrability of weakly compact sets in \(L_1\) to hold in the space \(\Lambda_{\varphi,w}\). It is also shown that there exists an Orlicz function \(\Phi\) with the upper Matuszewska–Orlicz index equal to \(1\) for which such an analog in the space \(\Lambda_{\Phi,w}\) does not hold. This answers a recent question of Leśnik, Maligranda, and Tomaszewski.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Albiac and N. J. Kalton, Topics in Banach Space Theory, in Grad. Texts in Math. (Springer, New York, 2006), Vol. 233.

    MATH  Google Scholar 

  2. S. V. Astashkin, N. Kalton, and F. A. Sukochev, “Cesàro mean convergence of martingale differences in rearrangement invariant spaces,” Positivity 12 (3), 387–406 (2008).

    Article  MathSciNet  Google Scholar 

  3. J. Lindenstrauss and L. Tzafriri, “On Orlicz sequence spaces. III,” Israel J. Math. 14, 368–389 (1973).

    Article  MathSciNet  Google Scholar 

  4. A. Kaminska and Y. Raynaud, “Isomorphic copies in the lattice \(E\) and its symmetrization \(E^*\) with applications to Orlicz–Lorentz spaces,” J. Funct. Anal. 257 (1), 271–331 (2009).

    Article  MathSciNet  Google Scholar 

  5. K. Leśnik, L. Maligranda, and J. Tomaszewski, Weakly Compact Sets and Weakly Compact Pointwise Multipliers in Banach Function Lattices, arXiv: 1912.08164 (2019).

  6. S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  7. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces (Springer- Verlag, Berlin, 1979).

    Book  Google Scholar 

  8. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces (Springer- Verlag, Berlin, 1977).

    MATH  Google Scholar 

  9. L. Maligranda, Orlicz Spaces and Interpolation, in Seminars in Math. (Univ. Campinas, Campinas, 1989), Vol. 5.

    MATH  Google Scholar 

  10. A. Kaminska, “Some remarks on Orlicz–Lorentz spaces,” Math. Nachr. 147, 29–38 (1990).

    Article  MathSciNet  Google Scholar 

  11. M. A. Krasnosel’skii and Ya. B. Rutitskii, Convex Functions and Orlicz Spaces (Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1958) [in Russian].

    MATH  Google Scholar 

  12. J. Flores, P. Tradacete, and V. G. Troitsky, “Disjointly homogeneous Banach lattices and compact products of operators,” J. Math. Anal. Appl. 354, 657–663 (2009).

    Article  MathSciNet  Google Scholar 

  13. J. Flores, F. L. Hernandez, E. M. Semenov, and P. Tradacete, “Strictly singular and power-compact operators on Banach lattices,” Israel J. Math. 188, 323–352 (2012).

    Article  MathSciNet  Google Scholar 

  14. J. Flores, F. L. Hernandez, E. Spinu, P. Tradacete, and V. G. Troitsky, “Disjointly homogeneous Banach lattices: Duality and complementation,” J. Funct. Anal. 266 (9), 5858–5885 (2014).

    Article  MathSciNet  Google Scholar 

  15. S. V. Astashkin, “Duality problem for disjointly homogeneous rearrangement invariant spaces,” J. Funct. Anal. 276 (10), 3205–3225 (2019).

    Article  MathSciNet  Google Scholar 

  16. C. Bennett and R. Sharpley, Interpolation of Operators (Boston, MA, Acad. Press, 1988).

    MATH  Google Scholar 

  17. S. V. Astashkin, “Rearrangement invariant spaces satisfying Dunford–Pettis criterion of weak compactness,” in Functional Analysis and Geometry, Contemp. Math. (Amer. Math. Soc., Providence, RI, 2019), Vol. 733, pp. 45–59.

    Article  MathSciNet  Google Scholar 

  18. E. Lavergne, “Reflexive subspaces of some Orlicz spaces,” Colloq. Math. 113 (2), 333–340 (2008).

    Article  MathSciNet  Google Scholar 

  19. S. I. Strakhov, “Characterization of the Orlicz spaces whose convergence is equivalent to convergence in measure on reflexive subspaces,” Siberian Math. J. 60 (4), 690–698 (2019).

    Article  Google Scholar 

  20. S. V. Astashkin and S. I. Strakhov, “On symmetric spaces with convergence in measure on reflexive subspaces,” Russian Math. (Iz. VUZ) 62 (8), 1–8 (2018).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Astashkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astashkin, S.V., Strakhov, S.I. On Disjointly Homogeneous Orlicz–Lorentz Spaces. Math Notes 108, 631–642 (2020). https://doi.org/10.1134/S0001434620110012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434620110012

Keywords

Navigation