Skip to main content
Log in

On the Solvability of Riemann Problems in Grand Hardy Classes

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The grand Hardy classes \(H_{p)}^{+}\) and \({}_{m}H_{p)}^{-}\), \(p>1\), of functions analytic inside and outside the unit disk, which are generated by the norms of the grand Lebesgue spaces, are defined. Riemann problems of the theory of analytic functions with piecewise continuous coefficient are considered in these spaces. For these problems in grand Hardy classes, a sufficient solvability condition on the coefficient of the problem is found and a general solution is constructed. It should be noted that grand Lebesgue spaces are nonseparable and, therefore, certain classical facts (for example, part of the Riesz theorem) do not hold in these spaces, as well as in the Hardy spaces generated by them. Therefore, one must find a suitable subspace associated with differential equations and study the problems in these subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Muskhelishvili, Boundary-Value Problems in the Theory of Functions and Some Applications of Them to Mathematical Physics (Nauka, Moscow, 1968) [in Russian].

    MATH  Google Scholar 

  2. F. A. Gakhov, Boundary-Value Problems (GIFML, Moscow, 1963) [in Russian].

    Google Scholar 

  3. I. N. Vekua, “Systems of differential equations of the first order of elliptic type and boundary value problems, with an application to the theory of shells,” Mat. Sb. 31 (73) (2), 217–314 (1952).

    MathSciNet  Google Scholar 

  4. G. S. Litvinchuk, Boundary-Value Problems and Singular Integral Equations with Shift (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  5. I. I. Danilyuk, Nonregular Boundary-Value Problems in the Plane (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  6. I. I. Privalov, Boundary properties of Univalent Analytic Functions (Izd. Moskov. Univ., Moscow, 1941) [in Russian].

    Google Scholar 

  7. P. Kusis and, Introduction to \(H^p\) Spaces with an Appendix on Wolff’s Proof of the Corona Theorem (Cambridge University Press, Cambridge–New York, 1980).

    Google Scholar 

  8. G. M. Goluzin, Geometrical Theory of Functions of a Complex Variable (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  9. F. V. Bitsadze, “On a system of functions,” Uspekhi Mat. Nauk 5 (4 (38)), 154–155 (1950).

    Google Scholar 

  10. S. M. Ponomarev, “On the theory of boundary-value problems for equations of mixed type in three- dimensional domains,” Dokl. Akad. Nauk SSSR 246 (6), 1303–1306 (1979).

    MathSciNet  Google Scholar 

  11. E. I. Moiseev, “On the basis property of sine and cosine systems in a weighted space,” Differ. Equ. 34 (1), 39–43 (1998).

    MathSciNet  MATH  Google Scholar 

  12. E. I. Moiseev, “The basis property for systems of sines and cosines,” Dokl. Akad. Nauk SSSR 275 (4), 794–798 (1984).

    MathSciNet  Google Scholar 

  13. B. T. Bilalov, “The basis property of some systems of exponentials of cosines and sines,” Differ. Equ. 26 (1), 8–13 (1990).

    MathSciNet  MATH  Google Scholar 

  14. B. T. Bilalov, “On the basis property of some systems of exponentials, cosines, and sines in \(L_p\),” Dokl. Akad. Nauk 379 (2), 158–160 (2001).

    MathSciNet  MATH  Google Scholar 

  15. B. T. Bilalov, “The basis properties of some systems of exponential functions, cosines, and sines,” Sib. Math. J. 45 (2), 214–221 (2004).

    Article  MATH  Google Scholar 

  16. B. T. Bilalov, “On the Stone and Bishop approximation theoems,” Math. Notes 81 (5), 590–595 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. B. T. Bilalov and Z. G. Guseynov, “Basicity of a system of exponents with a piece-wise linear phase in variable spaces,” Mediterr. J. Math. 9 (3), 487–498 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  18. B. T. Bilalov, “On solution of the Kostyuchenko problem,” Sib. Math. J. 53 (3), 404–418 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. N. Barmenkov, On approximation properties of some systems of functions, Cand. Sci. (Phys.–Math.) Dissertation (Moskov. Univ., Moscow, 1983) [in Russian].

  20. A. A. Shkalikov, “A system of functions,” Math. Notes 18 (6), 1097–1100 (1975).

    Article  Google Scholar 

  21. F. Xianling and Z. Dun, “On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\),” J. Math. Anal. Appl. 263 (2), 424–446 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  22. I. I. Sharapudinov, “Topology of the space \(\mathscr L^{p(t)}([0,1])\),” Math. Notes 26 (4), 796–806 (1979).

    Article  MATH  Google Scholar 

  23. C. T. Zorko, “Morrey spaces,” Proc. Amer. Math. Soc. 98 (4), 586–592 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  24. C. B. Morrey and Jr., “On the solutions of quasi-linear elliptic partial differential equations,” Trans. Amer. Math. Soc. 43 (1), 126–166 (1938).

    Article  MathSciNet  MATH  Google Scholar 

  25. D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis (Springer-Verlag, Heidelberg, 2013).

    Book  MATH  Google Scholar 

  26. D. R. Adams, Morrey Spaces (Springer, Cham, 2015).

    Book  MATH  Google Scholar 

  27. N. Samko, “Weight Hardy and singular operators in Morrey spaces,” J. Math. Anal. Appl 35 (1), 56–72 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. M. Kokilashvili, “Boundedness criteria for singular integrals in weighted grand Lebesque spaces,” J. Math. Sci. (N. Y.) 170 (No. 1), 20–33 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  29. R. E. Castilo and H. Rafeiro, An Introductory Course in Lebesgue Spaces (Springer, Cham, 2016).

    Book  Google Scholar 

  30. A. Fiorenza and G. E. Karadzhov, “Grand and small Lebesgue spaces and their analogs,” Z. Anal. Anwendungen 23 (4), 657–681 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  31. B. T. Bilalov and A. A. Quliyeva, “On basicity of exponential systems in Morrey-type spaces,” Internat. J. Math. 25 (6 (1450054)) (2014).

    MathSciNet  MATH  Google Scholar 

  32. B. T. Bilalov, “The basis property of a perturbed system of exponentials in Morrey-type spaces,” Sib. Math. J. 60 (2), 249–271 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  33. V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko, Integral Operators in Non-Standart Function Spaces, Vol. 2: Variable Exponent Hölder, Morrey–Companato and Grand Spaces, in Oper. Theory Adv. Appl. (Cham, Springer, 2016), Vol. 249.

    MATH  Google Scholar 

  34. Z. Meshveliani, “The Riemann–Hilbert problem in weighted Smirnov classes of analytic functions,” Proc. A. Razmadze Math. Inst. 137, 65–86 (2005).

    MathSciNet  MATH  Google Scholar 

  35. G. Manjavidze and V. Manjavidze, “Boundary value problems of analytic and generalized analytic functions,” J. Math. Sci. (N. Y.) 160 (6), 745–821 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  36. B. T. Bilalov, T. B. Gasymov and A. A. Guliyeva, “On the solvability of the Riemann boundary value problem in Morrey–Hardy classes,” Turkish J. Math. 40 (50), 1085–1101 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  37. T. I. Najafov and N. P. Nasibova, “On the noetherness of the Riemann problem in a generalized weighted Hardy classes,” Azerb. J. Math. 5 (2), 109–124 (2015).

    MathSciNet  MATH  Google Scholar 

  38. S. R. Sadigova and A. E. Quliyeva, “On the solvability of Riemann–Hilbert problem in the weighted Smirnov classes,” Anal. Math. 44 (4), 587–603 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  39. S. R. Sadigova, “The general solution of the homogeneous Riemann problem in the weighted Smirnov classes with general weight,” Azerb. J. Math. 9 (2), 134–147 (2019).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author wishes to express deep gratitude to the Corresponding Member of the National Academy of Sciences of Azerbaijan, Professor B. T. Bilalov for posing the problem, valuable remarks, and useful advice in the derivation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Ismailov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismailov, M.I. On the Solvability of Riemann Problems in Grand Hardy Classes. Math Notes 108, 523–537 (2020). https://doi.org/10.1134/S0001434620090242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434620090242

Keywords

Navigation