Skip to main content
Log in

Transformation of Fourier Series by Means of General Monotone Sequences

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

Estimates of the norms and the best approximations of the generalized Liouville–Weyl derivative in the two-dimensional case are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Simonov and S. Yu. Tikhonov, “Embedding theorems in constructive approximation,” Mat. Sb. 199 (9), 107–148 (2008) [Sb. Math. 199 (9), 1367–1407 (2008)].

    Article  MathSciNet  Google Scholar 

  2. S. Bernstein, “On the best approximation of continuous functions by polynomials of a given degree,” Comm. Soc. Math. Kharkow 13 (2), 49–194 (1912).

    Google Scholar 

  3. R. DeVore and G. G. Lorentz, Constructive Approximation (Springer-Verlag, Berlin, 1993).

    Book  Google Scholar 

  4. A. A. Konyushkov, “The best approximations of the trigonometric polynomials and the Fourier coefficients,” Mat. Sb. 44 (86) (1), 53–84 (1958).

    MathSciNet  Google Scholar 

  5. M. F. Timan, “Inverse theorems of the constructive theory of functions in Lp spaces (1 < p < ∞),” Mat. Sb. 46 (88) (1), 125–132 (1958).

    MathSciNet  Google Scholar 

  6. J. Marcinkiewicz, “Sur quelques intégrales du type de Dini,” Ann. Soc. Polon. Math. 17, 42–50 (1938).

    MATH  Google Scholar 

  7. O. V. Besov, “On conditions for the derivatives of periodic functions to belong to Lp,” Nauchn. Dokl. Vyssh. Shkoly Ser. Fiz.-Mat. Nauki 1, 13–17 (1959).

    Google Scholar 

  8. S. B. Stechkin, “On best approximation of conjugate functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR Ser. Mat. 20 (2), 197–206 (1956).

    MathSciNet  Google Scholar 

  9. M. F. Timan, “The imbedding of the \(L_p^{\left( k \right)}\) classes of functions,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 10, 61–74 (1974).

    Google Scholar 

  10. B. V. Simonov and S. Tikhonov, “On embeddings of the functional classes defined by constructive characteristics,” in Approximation and Probability, Banach Center Publ. (Polish Acad. Sci. Inst. Math., Warsaw, 2006), Vol. 72, pp. 285–307.

    Google Scholar 

  11. I. Szalay, “On the best approximation of factorized Fourier series,” in Approximation Theory (Reidel, Dordrecht, 1975), pp. 235–241.

    Chapter  Google Scholar 

  12. A. I. Stepanets and E. I. Zhukina, “Inverse theorems for the approximation of (ψ, β)-differentiable functions,” Ukr. Math. J. 41 (No. 8), 953–959 (1989).

    Article  MathSciNet  Google Scholar 

  13. A. Jumabayeva, “Liouville–Weyl derivatives, best approximations, and moduli of smoothness,” Acta Math. Hungar. 145 (No. 2), 369–391 (2015).

    Article  MathSciNet  Google Scholar 

  14. S. Tikhonov, “Embedding results in questions of strong approximation by Fourier series,” Acta Sci. Math. (Szeged) 72, 117–128 (2006).

    MathSciNet  MATH  Google Scholar 

  15. S. Tikhonov, “Trigonometric series with general monotone coefficients,” J. Math. Anal. Appl. 326 (1), 721–735 (2007).

    Article  MathSciNet  Google Scholar 

  16. M. Dyachenko and S. Tikhonov, “Convergence of trigonometric series with general monotone coefficients,” C. R. Math. Acad. Sci. Paris 345 (No. 3), 123–126 (2007).

    Article  MathSciNet  Google Scholar 

  17. M. Dyachenko and S. Tikhonov, “AHardy–Littlewood theorem for multiple series,” J. Math. Anal. Appl. 339 (1), 503–510 (2008).

    Article  MathSciNet  Google Scholar 

  18. D. Gorbachev, E. Liflyand, and S. Tikhonov, “Weighted Fourier inequalities: Boas’ conjecture in \({ℝ^n}\),” J. Anal. Math. 114, 99–120 (2011).

    Article  MathSciNet  Google Scholar 

  19. S. Tikhonov, “On L1-convergence of Fourier series,” J. Math. Anal. Appl. 347 (2), 416–427 (2008).

    Article  MathSciNet  Google Scholar 

  20. M. Dyachenko and S. Tikhonov, “Integrability and continuity of the functions represented by trigonometric series: coefficients criteria,” Studia Math. 193 (3), 285–306 (2009).

    Article  MathSciNet  Google Scholar 

  21. S. Tikhonov, “On generalized Lipschitz classes and Fourier series,” Z. Anal. Anwendungen 23 (No. 4), 745–764 (2004).

    Article  MathSciNet  Google Scholar 

  22. S. Yu. Tikhonov, “Generalized Lipschitz classes and Fourier coefficients,” Mat. Zametki 75 (6), 947–951 (2004) [Math. Notes 75 (6), 885–889 (2004)].

    Article  MathSciNet  Google Scholar 

  23. E. Liflyand and S. Tikhonov, “A concept of general monotonicity and application,” Math. Nachr. 284 (8-9), 1083–1098 (2011).

    Article  MathSciNet  Google Scholar 

  24. M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov, Fractional Moduli of Smoothness (Maks-Press, Moscow, 2016) [in Russian].

    Google Scholar 

  25. M. K. Potapov, “On the equivalence of convergence criteria for Fourier series,” Mat. Sb. 68 (110) (1), 111–127 (1965).

    MathSciNet  Google Scholar 

  26. S. M. Nikol’skii, Approximation of Functions of Several Variables and Embedding Theorems (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  27. A. Zygmund, Trigonometric Series (Cambridge Univ. Press, Cambridge, 1959, 1960; Mir, Moscow, 1965), Vols. 1, 2.

    MATH  Google Scholar 

  28. M. K. Potapov, “Approximation by ‘angle’,” in Proceedings of the Conference on the Constructive Theory of Functions, Budapest, 1969 (Akadémiai Kiadó, Budapest, 1972), pp. 371–399 [in Russian].

    Google Scholar 

  29. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Embedding Theorems (Nauka, Moscow, 1975) [in Russian].

    MATH  Google Scholar 

  30. A. Jumabayeva and B. Simonov, “Liouville–Weyl derivatives of double trigonometric series,” in Appl. Numer. Harmonic Anal.. (in press)

  31. M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov, “Relations between mixed moduli of smoothness, and embedding theorems for Nikol’skii classes,” in Trudy Mat. Inst. Steklova, Vol. 269: Function Theory and Differential Equations (MAIK Nauka/Interperiodica, Moscow, 2010), pp. 204–214 [Proc. Steklov Inst. Math. 269, 197–207 (2010)].

    Google Scholar 

  32. B. V. Simonov, On the Question of whether the Transformed Fourier Series Belongs to the Space Lp, Available from VINITI, No. 4985-81 (1981) [in Russian].

  33. M. G. Esmaganbetov, Conditions for the Existence of Mixed Weyl Derivatives in Lp ([0, 2π2]) (1 < p< ∞) and Its Structural Properties, Available from VINITI, No. 1675-82 (1982) [in Russian].

  34. M. K. Potapov, “The study of certain classes of functions by means of ‘angular’ approximation,” in Trudy Mat. Inst. Steklova, Vol. 117: Investigations in the Theory of Differentiable Functions of Many Variables and Its Applications. Part IV (MIAN, Moscow, 1972), pp. 256–291 [Proc. Steklov Inst. Math. 117, 301–342 (1972)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Jumabayeva or B. V. Simonov.

Additional information

Russian Text © The Author(s), 2020, published in Matematicheskie Zametki, 2020, Vol. 107, No. 5, pp. 674–692.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jumabayeva, A.A., Simonov, B.V. Transformation of Fourier Series by Means of General Monotone Sequences. Math Notes 107, 740–758 (2020). https://doi.org/10.1134/S0001434620050041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434620050041

Keywords

Navigation